Math, asked by RIYA1104, 1 year ago

if (1 + Cos A) (1 - cos A) = 3 / 4 find the value of secA

Answers

Answered by kritanshu
6
Solution:-

If you have any problem, you look in attachment.


Here, p = Perpendicular, b = Base and h = Hypotenuse

(1 + Cos A) (1 - cos A) = 3 / 4

 = > 1 - {cos}^{2} = \frac{3}{4}

 = > {sin}^{2} = \frac{3}{4}

 = > sinA = \frac{ \sqrt{3} }{2} = \frac{p}{h}

BC = \sqrt{4 - 3} = \sqrt{1} = 1

(By Pythagoras Theorem)

 Therefore, \: secA = \frac{h}{b} = \frac{2}{1} = 2
Attachments:
Answered by nikki200414
1

(1  + cosa) (1 -  cosa)  =  \frac{3}{4}  \\  1 -  { \cos(a) }^{2}  =  \frac{3}{4}   \\   -  \frac{1}{ { \sec(a) }^{2} } =  \frac{3 + 4}{4}  \\    \frac{1}{{ \sec(a) }^{2} }  =  -  \frac{7}{4}  \\  { \sec(a ) }^{2}  =  \frac{ - 4}{7}  \\  \sec(a )  =  \sqrt{ \frac{ - 4}{7} }

I hope this will help you

Similar questions