Math, asked by ishikachouhan117, 9 months ago

If 1 + cos alpha + {cos ^2}alpha + .........infty = 2 - sqrt 2 , then (0 < alpha < pi ) is

Answers

Answered by BrainlyPopularman
7

GIVEN :

  \\  \rm \implies 1 +  \cos( \alpha )  +  { \cos}^{2} ( \alpha ) + ...... \infty  = 2 -  \sqrt{2}  \\

TO FIND :

  \\   \to \rm \alpha(0 &lt;  \alpha  &lt; \pi)  = ?  \\

SOLUTION :

  \\  \rm \implies 1 +  \cos( \alpha )  +  { \cos}^{2} ( \alpha ) + ...... \infty  = 2 -  \sqrt{2}  \\

• This is an infinite G.P. series and sum of infinite G.P. series is –

  \\  \dashrightarrow \: { \boxed{ \rm S_{n}  =  \dfrac{a}{1 - r}}} \\

• Here –

  \\  \rm \:\:\:  { \huge{.}} \:\:\: a = 1\\

  \\  \rm \:\:\:  { \huge{.}} \:\:\: r =  \cos( \alpha ) \\

• So that –

  \\  \rm \implies  \dfrac{1}{1 -  \cos( \alpha ) }   = 2 -  \sqrt{2}  \\

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{1}{2 -  \sqrt{2}}  \\

• Now rationalization –

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{1}{2 -  \sqrt{2}} \times  \dfrac{2 +  \sqrt{2} }{2 +  \sqrt{2} }   \\

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{2 +  \sqrt{2} }{(2 -  \sqrt{2})(2 +  \sqrt{2})}   \\

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{2 +  \sqrt{2} }{(2)^{2}  -  (\sqrt{2})^{2}}   \\

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{2 +  \sqrt{2} }{4 - 2}   \\

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{2 +  \sqrt{2} }{2}   \\

  \\  \rm \implies 1 -  \cos( \alpha )   = 1 +  \dfrac{1}{ \sqrt{2} }  \\

  \\  \rm \implies  -  \cos( \alpha )   =    \dfrac{1}{ \sqrt{2} }  \\

  \\  \rm \implies   \cos( \alpha )   =    - \dfrac{1}{ \sqrt{2} }  \\

  \\  \rm \implies   \cos( \alpha )   =     \cos \left( \dfrac{\pi}{2} +  \dfrac{\pi}{4} \right)  \\

  \\  \rm \implies   \cos( \alpha )   =     \cos \left( \dfrac{3\pi}{4} \right)  \\

  \\  \rm \implies  \alpha  = \dfrac{3\pi}{4} \in \left(0 &lt;  \alpha  &lt; \pi \right)\\

Answered by MaIeficent
12

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

  • \sf1 +  \cos \alpha +   { \cos }^{2}  \alpha + .... +   \infty  = 2  -   \sqrt{2}

{\blue{\underline{\underline{\bold{To\:Find:-}}}}}

  • \alpha(0 &lt;  \alpha &lt; \pi)

{\green{\underline{\underline{\bold{Solution:-}}}}}

\sf1 +  \cos \alpha +   { \cos }^{2}  \alpha + .... +   \infty  = 2  -   \sqrt{2}

The given series is in G.P ( Geometric progession)

• a = 1

\sf r =  \dfrac{cos \alpha}{1}  = cos \alpha

\sf n = \infty

In G.P sum of n terms in given by:-

\boxed{   \rm\pink{ \rightarrow S_{n} =  \dfrac{a}{1 - r}  }}

Substituting the values:-

\sf \rightarrow S_{ \infty } =  \dfrac{1}{1 -  \cos \alpha}

\sf \rightarrow    \dfrac{1}{1 -  \cos \alpha}  = 2 -  \sqrt{2}

\sf \rightarrow    {1 -  \cos \alpha}  =  \dfrac{1}{2 -  \sqrt{2} }

\sf \rightarrow    {  \cos \alpha}  =  1 - \dfrac{1}{2 -  \sqrt{2} }

\sf \rightarrow    {  \cos \alpha}  =   \dfrac{2 -  \sqrt{2 } - 1 } {2 -  \sqrt{2} }

\sf \rightarrow    {  \cos \alpha}  =   \dfrac{1-  \sqrt{2 } } {2 -  \sqrt{2} }

By rationalising of denominator:-

\sf \rightarrow    {  \cos \alpha}  =   \dfrac{1-  \sqrt{2 } } {2 -  \sqrt{2} }  \times  \dfrac{2 +  \sqrt{2} }{2 +  \sqrt{2} }

\sf \rightarrow    {  \cos \alpha}  =   \dfrac{2 +  \sqrt{2 } - 2 \sqrt{2}    - 2} { {2}^{2}  -  {( \sqrt{2}) }^{2}   }

\sf \rightarrow    {  \cos \alpha}  =   \dfrac{  - \sqrt{2}   } { 4-   2   }

\sf \rightarrow    {  \cos \alpha}  =   \dfrac{  - \sqrt{2}   } { 2 }

\sf \rightarrow    {  \cos \alpha}  =   \dfrac{  - \sqrt{2}   } {  \sqrt{2} \times  \sqrt{2}   }

\sf \rightarrow    {  \cos \alpha}  =   \dfrac{  - 1   } {  \sqrt{2}    }

\sf \rightarrow    {  \cos \alpha}  =  \cos \bigg( \dfrac{3\pi}{4}  \bigg)

\sf \rightarrow    {  \alpha}  =   { \cos}^{ - 1}  \bigg \{ \cos \bigg( \dfrac{3\pi}{4}  \bigg) \bigg \}

\sf \rightarrow    {  \alpha}  =    \dfrac{3\pi}{4}

\boxed {\sf \purple{ \rightarrow \alpha(0 &lt;  \alpha  &lt; \pi) =  \frac{3\pi}{4}  }}

Similar questions