Math, asked by naveenchandra3635, 2 months ago

if (1 + cos theta) (1 -cos theta)=3/4, find the value of sec theta​

Answers

Answered by happeninghomo
3

Answer:

2

Step-by-step explanation:

Using formula :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

(1 -   \cos\alpha )(1 +  \cos\alpha )  = 1 -   { \cos ^{2} \alpha }

1 -   { \cos ^{2} \alpha } =  \frac{3}{4}

{ \cos ^{2} \alpha } = 1 -  \frac{3}{4}  =  \frac{1}{4}

 \cos \alpha   =  \frac{1}{2}  =  \frac{1}{ \sec\alpha  }

So,

 \sec \alpha   = 2

Similar questions