If (1/cosecθ – 1) + (1/cosecθ + 1) = 2secθ, 0°<θ<90°, then the value of (cotθ + Cosθ) is
Answers
Answered by
0
Answer:
Kal tera bhi boards hai kya? Same here
Step-by-step explanation:lol
Answered by
1
Answer:
(2+√2)/2
Step-by-step explanation:
1/(1/sinθ-1)+1/(1/sinθ+1)=2secθ
sinθ/(1-sinθ)+sinθ/(1+sinθ)=2secθ
(sinθ(1+sinθ)+sinθ(1-sinθ))/((1-sinθ)(1+sinθ))=2secθ
(sinθ+〖sin〗^2 θ+sinθ-〖sin〗^2 θ)/((1-〖sin〗^2 θ))=2secθ
2sinθ/(〖cos〗^2 θ)=2secθ
2tanθsecθ=2secθ
tanθ=1
∴θ=〖45〗^°
cotθ+cosθ=cot45+cos45
=1+1/√2
=(√2+1)/√2
=(2+√2)/2
Similar questions