If 1 + cosec theta + cot theta / cosec theta - cot theta = ?
Answers
Question:
\sf Prove \ that: \ \dfrac{1}{cosec\theta - cot\theta} = cosec\theta + cot\thetaProve that:
cosecθ−cotθ
1
=cosecθ+cotθ
Solution:
\begin{gathered}\longmapsto \ \sf LHS = \dfrac{1}{cosec\theta - cot\theta}\\ \\\end{gathered}
⟼ LHS=
cosecθ−cotθ
1
Multiplying the numerator and denominator by the conjugate of (cosecθ - cotθ) i.e, (cosecθ + cotθ) we get,
\begin{gathered}\longmapsto \ \sf LHS = \dfrac{1}{cosec\theta - cot\theta} \times \dfrac{\left(cosec\theta + cot\theta\right)}{\left(cosec\theta + cot\theta\right)}\\ \\ \\ \\\longmapsto \ \sf LHS = \dfrac{cosec\theta + cot\theta}{\left(cosec\theta - cot\theta\right) \left(cosec\theta + cot\theta\right)}\\ \\ \\ \\\sf Using \ the \ identity \ (a + b)(a - b) = a^2 - b^2 we get,\\ \\ \\ \\\longmapsto \ \sf LHS = \dfrac{cosec\theta + cot\theta}{cosec^2\theta - cot^2\theta}\\ \\ \\ \\\end{gathered}
⟼ LHS=
cosecθ−cotθ
1
×
(cosecθ+cotθ)
(cosecθ+cotθ)
⟼ LHS=
(cosecθ−cotθ)(cosecθ+cotθ)
cosecθ+cotθ
Using the identity (a+b)(a−b)=a
2
−b
2
weget,
⟼ LHS=
cosec
2
θ−cot
2
θ
cosecθ+cotθ
\begin{gathered}\\\end{gathered}
\begin{gathered}\sf Using \ the \ identity \ cosec^2\theta - cot^2\theta = 1 \ we \ get,\\ \\ \\ \\\longmapsto \ \sf LHS = \dfrac{cosec\theta + cot\theta}{1}\\ \\ \\ \\\longmapsto \ \sf LHS = cosec\theta + cot\theta\\ \\ \\ \\\longmapsto \sf \ \underline{\underline{LHS = RHS}}\end{gathered}
Using the identity cosec
2
θ−cot
2
θ=1 we get,
⟼ LHS=
1
cosecθ+cotθ
⟼ LHS=cosecθ+cotθ
⟼
LHS=RHS