If (1+i/1-1) = 1, then And the minimum positive integer of m.
Answers
Answered by
2
Answer:
Consider (
1−i
1+i
)
Rationalize the denominator we get,
⇒(
1−i
1+i
)=
(1−i)(1+1)
(1+i)(1+i)
=
(1−i)(1+i)
(1+i)
2
Here we see that denominator is in the form of (a+b)(a−b)=a
2
−b
2
⇒
1−i
1+i
=
1
2
−i
2
(1+i)
2
⇒
1−i
1+i
=
1−i
2
(1+i)
2
we know that (a+b)
2
=a
2
+2ab+b
2
⇒
1−i
1+i
=
1−i
2
1
2
+(2×1×i)+i
2
⇒
1−i
1+i
=
1−i
2
1
2
+2i+i
2
We know that i
2
=−1 , substituting this we get,
⇒
1−i
1+i
=
1−(−1)
1+2i+(−1)
⇒
1−i
1+i
=
1+1
1+2i−1
⇒
1−i
1+i
=
2
2i
⇒
1−i
1+i
=i
Given that ⇒(
1−i
1+i
)
m
=1
⇒(
1−i
1+i
)
m
=i
m
So, i
m
=1
We know that i
2
=−1
Squaring on both sides we get,
i
4
=(−1)
2
i
4
=1
Therefore the smallest value of m for which (
1−i
1+i
)
m
=1 is m=4
Similar questions