Math, asked by vishbk5963, 1 year ago

If (1+i)(1+2i)(1+3i).....(1+ni)=x+iy, then 2.5.10.....(1+n2) = ?

Answers

Answered by MaheswariS
92

Answer:

\bf\,2.5.10.....(1+n^2)=x^2+y^2

Step-by-step explanation:

Given:

(1+i)(1+2i)(1+3i).....(1+ni)=x+iy

Taking modulus on both sides, we get

|(1+i)(1+2i)(1+3i).....(1+ni)|=|x+iy|

Using the property,

\boxed{|z_1\,z_2\,z_3......z_n|=|z_1|\,|z_2|\,|z_3|.......|z_n|}

|1+i|\:|1+2i|\:|1+3i|.....|1+ni|=|x+iy|

\sqrt{1^2+1^2}\:\sqrt{1^2+2^2}\:\sqrt{1^2+3^2}.....\sqrt{1^2+n^2}=\sqrt{x^2+y^2}

\sqrt{1+1}\:\sqrt{1+4}\:\sqrt{1+9}.....\sqrt{1+n^2}=\sqrt{x^2+y^2}

\sqrt{2}\:\sqrt{5}\:\sqrt{10}.....\sqrt{1+n^2}=\sqrt{x^2+y^2}

squarring on both sides

\implies\boxed{\bf\,2.5.10.....(1+n^2)=x^2+y^2}

Similar questions