Math, asked by sonusagar50, 1 month ago

If(1+i)(1+2i)(1+3i)... (1+ni)=(x+iy) then prove that 2x5x10x...×(1+n²) = (x² + y²).
koi answer de do. ​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given Complex number is

 \sf \: (1 + i)(1 + 2i)(1 + 3i) -  -  - (1 + ni) = (x + iy)

Taking modulus on both sides, we get

 \sf \: \bigg |(1 + i)(1 + 2i)(1 + 3i) -  -  - (1 + ni)\bigg | =  |x + iy|

We know

\boxed{ \tt{ \:  |z_1 \times z_2|  =  |z_1|  \times  |z_2|  \: }}

and

\boxed{ \tt{ \: z = x + iy \:  \: \rm \implies\: |z| =  \sqrt{ {x}^{2}  +  {y}^{2} }  \: }}

So, using these results, we get

 \sf \:  |1 + i| |1 + 2i|  |1 + 3i| -  -  -  -  |1 + ni|  =  \sqrt{ {x}^{2}  +  {y}^{2} }

can be further rewritten as

 \sf \:(\sqrt{ {1}^{2}+{1}^{2} })( \sqrt{ {1}^{2}+{2}^{2} })( \sqrt{ {1}^{2} +{3}^{2} }) -  - ( \sqrt{1+{n}^{2}}) =  \sqrt{ {x}^{2} +  {y}^{2}  }

can be further rewritten as

 \sf \:  \sqrt{2} \times  \sqrt{5} \times  \sqrt{10}  \times  -  -  -  \times  \sqrt{1 +  {n}^{2} }  =  \sqrt{ {x}^{2}  +  {y}^{2} }

On squaring both sides, we get

\boxed{ \tt{ \: 2 \times 5 \times 10 \times  -  -  -  \times ( {n}^{2} + 1) =  {x}^{2} +  {y}^{2} \: }}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\red{\rm :\longmapsto\:z \: \overline{z} =  { |z| }^{2}  \: }

\red{\rm :\longmapsto\: |z|  =  |\overline{z}|  \: }

\red{\rm :\longmapsto\:\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \: }

\red{\rm :\longmapsto\:\overline{z_1  -  z_2} = \overline{z_1}  - \overline{z_2} \: }

\red{\rm :\longmapsto\:\overline{z_1 \times  z_2} = \overline{z_1} \times  \overline{z_2} \: }

\red{\rm :\longmapsto\:\overline{z_1  \div   z_2} = \overline{z_1}  \div   \overline{z_2} \: }

Similar questions