Math, asked by PalakGusain, 1 year ago

If (1-i/1+i)^100 = a+ib find (a,b)

Answers

Answered by Anonymous
136
hope this helps you☺️
Attachments:

PalakGusain: hello
PalakGusain: jb (1-i)² open hoga to 1+i²+2i aega na
Anonymous: nhi -2i aayegaa
Anonymous: a^2+b^2-2ab
PalakGusain: okk
PalakGusain: thank uu
PalakGusain: ☺☺
Anonymous: ☺️
Answered by boffeemadrid
19

Answer:

a=1 and b=0

Step-by-step explanation:

The given equation is:

(\frac{1-i}{1+i})^{100}=a+ib

Upon solving the above equation, we get

(\frac{1-i}{1+i}{\times}\frac{1-i}{1-i})^{100}=a+ib

(\frac{1+i^2-2i}{2})^{100}=a+ib

(\frac{1-1-2i}{2})^{100}=a+ib

(-i)^{100}=a+ib

(-i^2)^{50}=a+ib

1=a+ib

Thus, on comparing, a=1 and b=0.

Similar questions