Math, asked by akjha72, 1 year ago

if[1-i/1+i]^100=(a+ib) , find the values of a and b

Answers

Answered by FlashMello613
2
Rationalising [(1 - i)/(1 + i)],
 \frac{1 \:  -  \: i}{1 \:  +  \: i}  \:  \times  \:  \frac{1 \:  -  \: i}{1 \:   -  \: i}
 \frac{{(1 \:  -  \: i)}^{2} }{{(1)}^{2} \:  +  \: {( - 1)}^{2}  }
 \frac{(1 \:  -  \: 1 \:  -  \: 2i)}{2}
→ – i
{( -  \: i)}^{100}
{( -  \: i)}^{4 \:  \times  \: 25}
Since (– i)⁴ = (i)⁴ = 1,
Therefore,
{( -  \: i)}^{100}  \:  =  \: 1
→ 1
→ (1) + (0)i = a + ib
Therefore,
a = 1, b = 0.
Similar questions