If (1-i/1+i)^96 =a+ib then (a,b) is
A) (1,1)
B) (1,0)
C) (0,1)
D) (0,-1)
Answers
Answer:
(a , b) = (1 , 0) is the correct answer
Step-by-step explanation:
We are given
a+ib = ( (1 - i ) / (1 + i) )^96
= ( (1 - i )(1 - i) / (1 + i)( 1 - i) )^96 ∵ By rationalization
= ( (1 - i )² / (1² - i²) )^96 ∵ (a² - b²) = (a + b)(a - b)
= ( (1² + i² - 2i ) / (1 + 1) )^96 ∵ (a - b)² = a² + b² - 2ab
= ( (1 - 1 - 2i ) / (2) )^96 ∵ i² = -1
= ( ( - 2i ) / (2) )^96
= ( ( - i ) )^96
= ( - i )^96
= (-1)^96 (i)^96 ∵ (-1)^96 = -1 because 96 is even
= i^96
= (i²)^48
= (-1)^48 ∵ (-1)^96 = -1 because 96 is even
= 1
= 1 + 0(i)
So
a + bi = 1 + (0)i
Thus
(a , b) = (1 , 0) is the correct answer