Math, asked by manash3885, 11 months ago

If (1+i/1-i)x =1 then what is the value of x​

Answers

Answered by deblinamukherjee321
1

Answer: -i

Step-by-step explanation:

(1+i/1-i)x=1

{(1+i)/(1-i)×(1+i)/(1+i)} x=1

{(1+i)2/(1-i2)}x=1

(1+2i+i2/(1+1))x=1

(1+2i-1/(2))x=1

2ix=2

x=1/i

x=-i

Answered by Anonymous
1

Given \:  \: Question \:  \: Is \:  \\  \\ ( \frac{(1 + i)}{(1 - i)} ) {}^{x}  = 1 \:  \:  \: find \:  \:  \: x \\  \\ Answer \:  \\  \\ ( \frac{(1 + i) \times (1 + i)}{(1 - i) \times (1 + i)} ) {}^{x}  = 1 \\  \\  (\frac{(1 + i) {}^{2} }{(1 {}^{2} - i {}^{2})  } ) {}^{x}  = 1 \\  \\  (\frac{(1 + i {}^{2}  + 2i )}{(1 + 1)} ) {}^{x}  = 1 \\  \\  (\frac{(1 -1 + 2i)}{2} ) {}^{x}  = 1 \\  \\ ( \frac{2i}{2} ) {}^{x}  = 1 \\  \\ i {}^{x}  = 1 \\  \\ now \: the \: question \: is \: what \: would \: be \: the \:  \\ value \: of \: x \: so \: that \:  \: i {}^{x}  = 1 \\  \\ x \:  \: must \:  \: be \:  \:  \: 4n  \:where  \: n \:  \: belongs \:  \: to \:  \: set \:  \: of \:  \: real \:  \: numbers\\</p><p>so\:x=4n</p><p>

Similar questions