Math, asked by jasimmirzaali, 9 hours ago

If |1 + i| x = 2 then write the value of x.

Answers

Answered by mathdude500
15

Appropriate Question :-

 \sf \: If \:  { |1 + i| }^{x} = 2, \: then \: write \: the \: value \: of \: x

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: { |1 + i| }^{x} = 2

We know,

 \red{\boxed{\sf{ If \: z = x + iy, \: then \:  |z| =  \sqrt{ {x}^{2}  +  {y}^{2} }}}}

So, using this identity, we get

\rm :\longmapsto\: {( \sqrt{ {1}^{2}  +  {1}^{2} } )}^{x}  = 2

\rm :\longmapsto\: {( \sqrt{1 + 1} )}^{x}  = 2

\rm :\longmapsto\: {( \sqrt{2} )}^{x}  = 2

can be further rewritten as

\rm :\longmapsto\: {( \sqrt{2} )}^{x}  =  {( \sqrt{2}) }^{2}

\bf\implies \:x = 2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Argument of complex number

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Answered by OoAryanKingoO78
21

Answer:

Appropriate Question :-

 \sf \: If \:  { |1 + i| }^{x} = 2, \: then \: write \: the \: value \: of \: x

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: { |1 + i| }^{x} = 2

We know,

 \purple{\boxed{\sf{ If \: z = x + iy, \: then \:  |z| =  \sqrt{ {x}^{2}  +  {y}^{2} }}}}

So, using this identity, we get

\rm :\longmapsto\: {( \sqrt{ {1}^{2}  +  {1}^{2} } )}^{x}  = 2

\rm :\longmapsto\: {( \sqrt{1 + 1} )}^{x}  = 2

\rm :\longmapsto\: {( \sqrt{2} )}^{x}  = 2

can be further rewritten as

\rm :\longmapsto\: {( \sqrt{2} )}^{x}  =  {( \sqrt{2}) }^{2}

\bf\implies \:x = 2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions