Math, asked by mhp00521, 2 months ago

If 1 is a common root of the quadratic equation ax² + ax+3= 0 and the quadratic equation ax² + ax + b= 0 ,then find a and b.​

Answers

Answered by JayaVardhan2008
1

Answer:

n ax² + ax+3= 0 and the quadratic equation ax² + ax + b= 0 ,then find a and b.​

Step-by-step explanation:

n ax² + ax+3= 0 and the n ax² + ax+3= 0 and the quadratic equation ax² + ax + b= 0 ,then find a and b.​ ax² + ax+3= 0 and the quadratic equation ax² + ax + b= 0 ,then find a and b.​ic equation ax² + ax + b= 0 ,then find a and b.​n ax² + ax+3= 0 and the quadratic equation ax² + ax + b= 0 ,then find a and b.​

Answered by TheBrainlistUser
2

\large\underline\mathfrak\red{Given \:  :- }

  • x =1 is the common roots given quadratic equation are ax² + ax + 3 = 0 and x² + x + b =0.

\large\underline\mathfrak\red{To  \: find  \: :- }

  • a and b

\large\underline\mathfrak\red{Solution  \: :- }

We know that,

x =1 is the common roots given quadratic equation are ax² + ax + 3 = 0 and x² + x + b =0.

Here,

ax² + ax + 3 = 0 ...(1)

x² + x + b =0 ...(2)

Putting the value of x = 1 in equation (1)

\sf\implies{ax {}^{2}  + ax + 3 = 0}  \:  \:  \:  \:  \:  \:  \: \\ \sf\implies{a(1) {}^{2}  + a(1) + 3 = 0} \\ \sf\implies{a + a + 3 = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \sf\implies{2a =  - 3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf\implies{a =  \frac{ - 3}{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now,

Putting value x = 1 in equation (2)

\sf\implies{x {}^{2} + x + b = 0 } \\ \sf\implies{1 {}^{2} + 1 + b = 0 } \\ \sf\implies{1 + 1 + b = 0} \: \\ \sf\implies{2 + b = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf\implies{b =  - 2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

{\underline{\boxed{\sf{\red{a = \frac{ - 3}{2}  }}}}}

{\underline{\boxed{\sf{\red{b = -2}}}}}

___________________________________________________

If you want ab

\sf\implies{ab =  \frac{ - 3}{2} \times  - 2 } \\ \sf\implies{ab =  - 3 \times  - 1} \\ \sf\implies{ab = 3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

{\underline{\boxed{\sf{\red{ab = 3 }}}}}

_____________________________________

Similar questions