Math, asked by Nitinp1565, 10 months ago

If 1 is added to both numerator and denominator of a fraction , it becomes 7/8 and if 1 is subtracted from both numerator and denominator of the same fraction , it becomes 6/7.Find the fraction.

Answers

Answered by BrainlyPopularman
63

GIVEN :

If 1 is added to both numerator and denominator of a fraction , it becomes 7/8.

• If 1 is subtracted from both numerator and denominator of the same fraction , it becomes 6/7.

TO FIND :

The fraction = ?

SOLUTION :

• Let the fraction is   \:  \sf \: \dfrac{x}{y}  \:

• According to the first condition –

 \\    \implies \sf  \dfrac{x + 1}{y + 1} =  \dfrac{7}{8}   \\

 \\    \implies \sf 8(x + 1) = 7(y +1 )  \\

 \\    \implies \sf 8x + 8 = 7y +7  \\

 \\    \implies \sf 8x  = 7y  - 1  \\

 \\    \implies \sf x  =  \dfrac{1}{8} (7y  - 1)   \:  \:  \:  -  -  - eq.(1)\\

• According to the second condition –

 \\    \implies \sf  \dfrac{x  -  1}{y  -  1} =  \dfrac{6}{7}   \\

 \\    \implies \sf 7(x  - 1) = 6(y  - 1 )  \\

 \\    \implies \sf 7x  - 7 = 6y  - 6  \\

 \\    \implies \sf 7x  = 6y   +  1  \\

• Now using eq.(1) –

 \\    \implies \sf 7 \left[\dfrac{1}{8} (7y  - 1) \right] = 6y   +  1  \\

 \\    \implies \sf 7  (7y  - 1) = 8(6y   +  1 ) \\

 \\    \implies \sf \: 49y  - 7 = 48y   +  8 \\

 \\    \implies \sf \: 49y  - 48y = 7  +  8 \\

 \\    \implies \sf \large y = 15 \\

• Put the value of 'y' in eq.(1) –

 \\    \implies \sf x  =  \dfrac{1}{8} (7 \times 15 - 1)   \\

 \\    \implies \sf x  =  \dfrac{1}{8} ( 105 - 1)   \\

 \\    \implies \sf x  =  \dfrac{1}{8} ( 104)   \\

 \\    \implies \sf \large x  =  13   \\

• Hence , The fraction is   \:  \sf \:  \dfrac{x}{y}  = \dfrac{13}{15} . \:

Answered by Anonymous
41

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  • If 1 is added to both numerator and denominator of fraction,it becomes 7/8.
  • If 1 is subtracted from both numerator and denominator of the same fraction,it becomes 6/7.

{\bf{\blue{\underline{To\:Find}}}}

  • Fraction =?

{\bf{\blue{\underline{Now:}}}}

  • Let the fraction =r/m

  \star \:  \:  \huge\underline{\mathfrak{ case \: 1:-}} \\ \\

If 1 is added to both numerator and denominator of fraction then it becomes 7/8.

 : \implies{\sf{  \frac{r + 1}{m + 1}  =  \frac{7}{8} }} \\ \\

 : \implies{\sf{  8(r + 1) = 7(m + 1) }} \\ \\

 : \implies{\sf{  8r + 8 = 7m + 7 }} \\ \\

 : \implies{\sf{  8r  - 7m = 7 - 8 }} \\ \\

 : \implies{\sf{  8r  - 7m = -1.......(1) }} \\ \\

____________________________________

  \star \:  \: \huge \underline{\mathfrak{ case \: 2:-}} \\ \\

If 2 is subtracted to both numerator and denominator of fraction then it becomes 6/7.

 : \implies{\sf{  \frac{r - 1}{m - 1}  =  \frac{6}{7} }} \\ \\

 : \implies{\sf{  7(r - 1) = 6(m - 1) }} \\ \\

 : \implies{\sf{  7r - 7 = 6m -6 }} \\ \\

 : \implies{\sf{  7r  - 6m = 7-6}} \\ \\

 : \implies{\sf{  7r  - 6m = 1.......(2) }} \\ \\

________________________________________

From (1) and (2),

Take (1),

 : \implies{\sf{  8r = -1 + 7m }} \\ \\

 : \implies{\sf{ r=  \frac{7m - 1}{8}....(3)  }} \\ \\

Put the Value of r in equation (2),

 : \implies{\sf{  7  \bigg(\frac{7m - 1}{8} \bigg)  - 6m = 1 }} \\ \\

 : \implies{\sf{    \bigg(\frac{49m - 7}{8} \bigg)  - 6m = 1 }} \\ \\

 : \implies{\sf{    49m - 7 - 48m =8 }} \\ \\

 : \implies{\sf{    m - 7 =8 }} \\ \\

 : \implies{\sf{    m =8 +7}} \\ \\

 : \implies\boxed{\sf{    m =15}} \\ \\

Now put the Value of m in equation (3),

 : \implies{\sf{ r=  \frac{7(15) - 1}{8}  }} \\ \\

 : \implies{\sf{ r=  \frac{105 - 1}{8}  }} \\ \\

 : \implies{\sf{ r=  \frac{104}{8}  }} \\ \\

 : \implies{\sf\boxed{ r=  13  }} \\ \\

 : \dagger \:  \: {\sf{ hence \: the \: fraction \:  =  \frac{13}{15}  }} \\ \\

Similar questions