Math, asked by aryamathew9943, 30 days ago

If 1 is added to both numerator and denominator of a fraction it becomes equal to 7/8 however 1 is subtracted from both numerator and denominator of the same fraction it becomes equal to 6 /7 find the fraction let the required fraction be

Answers

Answered by Athul4152
1

ANSWER = 13/15

 \sf \: Let  \: the \:  fraction \:  be  \:  \:  \frac{x}{y} \\

  \sf \frac{x + 1}{y + 1}  =  \frac{7}{8}   \\

 \sf \: 8(x + 1) = 7(y + 1) \\

 \sf8x + 8 = 7y + 7

8x - 7y =  - 1 -  -  -  - (1)

 \rule{10cm}{0.02cm}

 \sf \:  \frac{x - 1}{y - 1}  =  \frac{6}{7}  \\

 \sf \: 7(x - 1) = 6(y - 1)

 \sf7x - 7 = 6y - 6

 \sf7x - 6y =  1 -  -  -  -  -  - (2)

 \rule{10cm}{0.02cm}

8x - 7y =  - 1 -  -  -  -  -  -  - (1)

7x - 6y =  1 -  -  -  -  -  -  - (2)

 \rule{10cm}{0.02cm}

 \sf(1) \times 7 \implies \: 56x - 49y =  - 7 -  - (3)

[

 \sf(2) \times 8\implies56x - 48y =  8 -  - (4)

 \sf \: (3) - ( - (4))  \implies \:  \:  - y = -  15

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y \:  \:  \:  \:  \:  =    15  \\

 \rule{10cm}{0.02cm}

substitute the value of y in (1)

\implies \: 8x - 7( 15)=  - 1 \\

\implies \: 8x   -  105=  - 1 \\

\implies \: 8x =   104

\implies \: x \:  =     \frac{ 104}{8}  \\

\implies \: x \:  =    13

 \rule{10cm}{0.02cm}

fraction \:  =  \frac{13}{15}  \\

Answered by susmitasamal050
0

Answer:13/15

Step-by-step explanation:

Similar questions