Math, asked by Notgonnatellmyname75, 2 days ago

If 1 is added to the denominator of a fraction, the fraction becomes 1/2. If 1 is added to the numerator, the fraction becomes 1. The fraction is:

a. 4/7
b. 5/9
c. 2/3
d. 10/11

Answers

Answered by ripinpeace
142

\rm{  The \: fraction \: is \:  \dfrac{2}{3} }

Step-by-step explanation:

Given -

  • If 1 is added to the denominator of a fraction, the fraction becomes 1/2.
  • If 1 is added to the numerator, the fraction becomes 1.

To find -

  • The fraction.

Concept -

  • Here, we'll use the concept of linear equations in two variables to solve the question.

Solution -

 \rm{Let  \: the  \: fraction  \: be  \:  \bf  \red{\dfrac{x}{y} }}

According to the first statement,

 \longmapsto \rm{ \bf{ \dfrac{x}{y + 1}  =  \dfrac{1}{2} }}

 \longmapsto \rm{ \bf{2x = y  + 1}}

 \longmapsto \rm{ \bf{ \pink{2x  - 1= y} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)}

Now, according to the second statement,

 \longmapsto \rm{ \bf{ \dfrac{x + 1}{y}  = 1}}

 \longmapsto \rm{ \bf{ {x + 1}  = y}}

{ \longmapsto \rm{ \bf{ {x + 1}  = 2x - 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \{from \: (1) \}}}

{ \longmapsto \rm{ \bf{ {1+ 1}  = 2x - x} }}

{ \longmapsto \rm{ \bf \green{{ {2}  = x} }}} \:  \:  \:  \:  \: \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:\bf \ {\rm \{putting \: in \: (1)  \}}

{ \longmapsto \rm{ \bf{ {2(2) - 1}  = y} }}

{ \longmapsto \rm{ \bf{ {4- 1}  = y} }}

{ \longmapsto \rm{ \bf{  \orange{{3}  = y} }}}

 \bf  \rm{ \purple{\therefore  the \: fraction \: is \:  \dfrac{2}{3} }}

Similar questions