English, asked by stuti4342, 11 months ago

if 1,log 3(3x-2), 2log9(3x-8/3)are in the AP, then the value of x can be

Answers

Answered by Anonymous
2

Answer:

We have an AP: 1, log9(31−x+2), log3(4.3x−1) We have to find value of x.

d=a2−a1

d=log(31−x+2)9−1

d=log(31−x+2)123−log33

d=log(31−x+2)1233

Also

d=a3−a2

d=log(4.3x−1)3−log(31−x+2)123

d=log4.3x−1(31−x+2)123

now

a2−a1=a3−a2

log(31−x+2)1233=log4.3x−1(31−x+2)123

log(31−x+2)1233−log4.3x−1(31−x+2)123=0

log(31−x+2)123.(31−x+2)124.3x−13=0

log31−x+23(4.3x−1)3=0

so

31−x+23.4.3x−3=1

31−x+2=3.4.3x−3

3.4.3x−31−x=5

Answered by ritisha2602
0

Answer:

Explanation:

So, we given 1,log  

3

(3  

x

−2),2log  

9

(3  

x

−8  

3

) are in A.P

Then 2log  

3

(3  

x

−2)=2log  

9

(3  

x

−8  

3

)+1

Note that log  

9

(3  

x

−8  

3

)=  

2

1

log  

3

(3  

x

−8  

3

)

So 2log  

3

(3  

x

−2)=  

2

2

log  

3

(3  

x

−8  

3

)+log  

3

3

 

2log  

3

(3  

x

−2)=log  

3

3(3  

x

−8  

3

)

Let 3  

x

=y2log  

3

(y−2)=log  

3

y−8  

3

 

⇒(y−2)  

2

=log  

3

3(y−8  

3

)

⇒y  

2

−7y+12=0

⇒y=3 or y=4  

⇒3  

x

=3 or 3  

x

=4

⇒x=log  

3

3

 or x=log  

3

4

 

⇒x=y or xlog  

3

4

Similar questions