Math, asked by Aditiiiiiiiiiii, 9 months ago

If 1/log_a t + 1/log_b t + 1/log_c t = 1/log_z t the value of z is ?

Please Give Full Solution for Q. 81

(a) abc is Correct Answer

Attachments:

Answers

Answered by shadowsabers03
3

Let us recall the logarithmic identities,

\longrightarrow\sf{\log_ba=\dfrac{\log a}{\log b}\quad\quad\dots(1)}

\longrightarrow\sf{\log a+\log b=\log(ab)\quad\quad\dots(2)}

Given in the question,

\longrightarrow\sf{\dfrac{1}{\log_at}+\dfrac{1}{\log_bt}+\dfrac{1}{\log_ct}=\dfrac{1}{\log_zt}}

Using (1),

\longrightarrow\sf{\dfrac{1}{\left(\dfrac{\log t}{\log a}\right)}+\dfrac{1}{\left(\dfrac{\log t}{\log b}\right)}+\dfrac{1}{\left(\dfrac{\log t}{\log c}\right)}=\dfrac{1}{\left(\dfrac{\log t}{\log z}\right)}}

\longrightarrow\sf{\dfrac{\log a}{\log t}+\dfrac{\log b}{\log t}+\dfrac{\log c}{\log t}=\dfrac{\log z}{\log t}}

\longrightarrow\sf{\dfrac{\log a+\log b+\log c}{\log t}=\dfrac{\log z}{\log t}}

\longrightarrow\sf{\log a+\log b+\log c=\log z}

Using (2),

\longrightarrow\sf{\log (abc)=\log z}

Taking antilog,

\sf{\longrightarrow\underline{\underline{z=abc}}}

Hence (a) is the answer.

Similar questions