Math, asked by sona789, 1 year ago

If 1/m+1/n=-3 an mn=-1/54 then find the value of 1/m^3+1/n^3

Answers

Answered by sanjay270899
11
Given,

mn \: = \frac{ - 1}{54} .............(1)

Also,

\frac{1}{m} + \frac{1}{n} = - 3

\frac{m \: + \: n}{mn} = - 3

m \: + \: n = - 3mn

Substituting the value of 'mn' from equation (1),

m \: + \: n = (- 3)(\frac{ - 1}{54} )

m \: + \: n = \frac{3}{54} \: ........(2)

now \: the \: value \: of \: \frac{1}{ {m}^{3} } + \frac{1}{ {n}^{3} }

 = \frac{{m}^{3} + {n}^{3}}{{(mn)}^{3} }

From above image we can write m^3 + n^3 as,

 = \frac{{(m \: + n)}^{3} \: - 3mn(m \: + \: n)}{{(mn)}^{3} }

Now substituting the value of mn and m+n from (1) and (2), we get,

 = \frac{{( \frac{3}{54} )}^{3} \: - \: 3( \frac{ - 1}{54} )(\frac{3}{54} )}{{( \frac{ - 1}{54} )}^{3} }

 = \frac{{( \frac{3}{54} )}^{3} \: + \: {( \frac{ 3}{54} )}^{2} }{{( \frac{ - 1}{54} )}^{3} }

 =\frac{ {3}^{3} + ({3}^{2} )(54)}{( - 1)}

 = ( - 1)({3}^{2})(3 + 54)

 = ( - 1)(9)(57)

 = ( - 1)(513)

 = ( -513)


Answer: -513
Attachments:

sanjay270899: Is this answer is right?
Answered by itsmeakkii0
4

Answer:

Step-by-step explanation:

Attachments:
Similar questions