Math, asked by micheal111, 18 days ago

If -1+p+q=1-r, where p,q,and r are constants, solve the given relation.
\frac{\sqrt{x-1}-q-r}{p} +\frac{\sqrt{x-1}-r-p}{q}+\frac{\sqrt{x-1}-p-q }{r}=3

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given that,

\rm \:  - 1 + p + q = 1 - r \\

\rm\implies \:\boxed{ \rm{ \:p + q + r = 2 \:  \: }} -  -  - (1) \\

Now, Consider

\rm \: \frac{\sqrt{x-1}-q-r}{p} +\frac{\sqrt{x-1}-r-p}{q}+\frac{\sqrt{x-1}-p-q }{r}=3 \\

can be re-arranged as

\rm \: \frac{\sqrt{x-1}-q-r}{p} +\frac{\sqrt{x-1}-r-p}{q}+\frac{\sqrt{x-1}-p-q }{r}=1 + 1 + 1 \\

\rm \: \frac{\sqrt{x-1}-q-r}{p} +\frac{\sqrt{x-1}-r-p}{q}+\frac{\sqrt{x-1}-p-q }{r} - 1 - 1 - 1 = 0 \\

\rm \: \frac{\sqrt{x-1}-q-r}{p} - 1 +\frac{\sqrt{x-1}-r-p}{q} - 1+\frac{\sqrt{x-1}-p-q }{r} - 1 = 0 \\

\rm \: \frac{\sqrt{x-1}-q-r - p}{p} +\frac{\sqrt{x-1}-r-p - q}{q}+\frac{\sqrt{x-1}-p-q - r}{r}= 0 \\

\rm \: \frac{\sqrt{x-1}-(q + r + p)}{p} +\frac{\sqrt{x-1}-(r + p  +  q)}{q}+\frac{\sqrt{x-1}-(p + q + r)}{r}= 0 \\

\rm \: \frac{\sqrt{x-1}-2}{p} +\frac{\sqrt{x-1}-2}{q}+\frac{\sqrt{x-1}-2}{r}= 0 \\

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{[ \:  \because \: \rm \: p + q + r = 2 \: ]}

\rm \: ( \sqrt{x - 1} - 2)\bigg(\dfrac{1}{p}  + \dfrac{1}{q}  + \dfrac{1}{r}  \bigg) = 0

\rm\implies \:\rm \:  \sqrt{x - 1} - 2 = 0 \\

\rm \:  \sqrt{x - 1} =2\\

On squaring both sides, we get

\rm \: x - 1 = 4 \\

\rm \: x = 4 + 1 \\

\rm\implies \:\boxed{ \rm{ \:x = 5 \: }} \\

Verification :-

Consider, LHS

\rm \: \frac{\sqrt{x-1}-q-r}{p} +\frac{\sqrt{x-1}-r-p}{q}+\frac{\sqrt{x-1}-p-q }{r} \\

On substituting x = 5, we get

\rm \:  = \frac{\sqrt{5-1}-q-r}{p} +\frac{\sqrt{5-1}-r-p}{q}+\frac{\sqrt{5-1}-p-q }{r} \\

\rm \:  = \frac{\sqrt{4}-q-r}{p} +\frac{\sqrt{4}-r-p}{q}+\frac{\sqrt{4}-p-q }{r} \\

\rm \:  = \frac{2-q-r}{p} +\frac{2-r-p}{q}+\frac{2-p-q }{r} \\

\rm \:  = \frac{p}{p} +\frac{q}{q}+\frac{r}{r} \\

\rm \:  =  \: 1 + 1 + 1 \\

\rm \:  =  \: 3 \\

Hence, Verified

Similar questions