If 1 + secA = x, then the value of x is
A) sinAtanA/(1 + cos
Answers
Answered by
12
Hi ,
****************************************
We know the trigonometric identity:
1 ) sec² A - 1 = tan² A
And
2 ) tanA = sinA/cosA
3) secA =1/cosA
************************************
Now ,
It is given that ,
x = 1 + secA
x = Sec A + 1
x=[ ( secA+ 1 )( secA - 1 ) ]/( secA - 1 )
x = ( sec²A - 1 )/ ( 1/cosA - 1 )
x = tan² A / [ ( 1 - cosA )/cosA ]
x = ( sin²A/cos²A )/[ (1 - cosA )/cosA ]
x = ( sin²A/cosA ) / ( 1 - cos A )
x = [ sinA ( sinA/cosA ) ]/( 1 - cosA )
x = sinAtanA /( 1 - cosA )
Option ( 3 ) is correct .
I hope this helps you.
: )
****************************************
We know the trigonometric identity:
1 ) sec² A - 1 = tan² A
And
2 ) tanA = sinA/cosA
3) secA =1/cosA
************************************
Now ,
It is given that ,
x = 1 + secA
x = Sec A + 1
x=[ ( secA+ 1 )( secA - 1 ) ]/( secA - 1 )
x = ( sec²A - 1 )/ ( 1/cosA - 1 )
x = tan² A / [ ( 1 - cosA )/cosA ]
x = ( sin²A/cos²A )/[ (1 - cosA )/cosA ]
x = ( sin²A/cosA ) / ( 1 - cos A )
x = [ sinA ( sinA/cosA ) ]/( 1 - cosA )
x = sinAtanA /( 1 - cosA )
Option ( 3 ) is correct .
I hope this helps you.
: )
Answered by
5
Answer:
Hi ,
****************************************
We know the trigonometric identity:
1 ) sec² A - 1 = tan² A
And
2 ) tanA = sinA/cosA
3) secA =1/cosA
************************************
Now ,
It is given that ,
x = 1 + secA
x = Sec A + 1
x=[ ( secA+ 1 )( secA - 1 ) ]/( secA - 1 )
x = ( sec²A - 1 )/ ( 1/cosA - 1 )
x = tan² A / [ ( 1 - cosA )/cosA ]
x = ( sin²A/cos²A )/[ (1 - cosA )/cosA ]
x = ( sin²A/cosA ) / ( 1 - cos A )
x = [ sinA ( sinA/cosA ) ]/( 1 - cosA )
x = sinAtanA /( 1 - cosA )
Option ( 3 ) is correct .
I hope this helps you.
: )
Similar questions