Math, asked by vineth3779, 10 months ago

If 1 + secA = x, then the value of x is

A) sinAtanA/(1 + cos

Answers

Answered by kings07
12
Hi ,

****************************************
We know the trigonometric identity:

1 ) sec² A - 1 = tan² A

And 

2 ) tanA = sinA/cosA

3) secA =1/cosA

************************************

Now ,

It is given that ,

x = 1 + secA

x = Sec A + 1 

x=[ ( secA+ 1 )( secA - 1 ) ]/( secA - 1 )

x = ( sec²A - 1 )/ ( 1/cosA - 1 )

x = tan² A / [ ( 1 - cosA )/cosA ]

x = ( sin²A/cos²A )/[ (1 - cosA )/cosA ]

x = ( sin²A/cosA ) / ( 1 - cos A )

x = [ sinA ( sinA/cosA ) ]/( 1 - cosA )

x = sinAtanA /( 1 - cosA )

Option ( 3 ) is correct .

I hope this helps you.

: )
Answered by Anonymous
5

Answer:

Hi ,

****************************************

We know the trigonometric identity:

1 ) sec² A - 1 = tan² A

And 

2 ) tanA = sinA/cosA

3) secA =1/cosA

************************************

Now ,

It is given that ,

x = 1 + secA

x = Sec A + 1 

x=[ ( secA+ 1 )( secA - 1 ) ]/( secA - 1 )

x = ( sec²A - 1 )/ ( 1/cosA - 1 )

x = tan² A / [ ( 1 - cosA )/cosA ]

x = ( sin²A/cos²A )/[ (1 - cosA )/cosA ]

x = ( sin²A/cosA ) / ( 1 - cos A )

x = [ sinA ( sinA/cosA ) ]/( 1 - cosA )

x = sinAtanA /( 1 - cosA )

Option ( 3 ) is correct .

I hope this helps you.

: )

Similar questions