Math, asked by sdrajgowtham2007, 10 days ago

if 1 + sin^2 alpha = 3 sin alpha.cos alpha.. then find cot alpha​

Answers

Answered by sheeb12ansari
5

Here we have

1+sin^{2}  \alpha =3sin\alpha .cos\alpha

Now put the value

sin^{2} \alpha  +cos^{2} \alpha =1

So we get

sin^{2} \alpha +cos^{2} \alpha +sin^{2} \alpha =3sin\alpha cos\alpha \\2sin^{2} \alpha +cos^{2} \alpha  =3sin\alpha cos\alpha \\2sin^{2} \alpha +cos^{2} \alpha  -3sin\alpha cos\alpha =0\\2sin^{2} \alpha   -3sin\alpha cos\alpha +cos^{2} \alpha=0\\2sin^{2} \alpha   -2sin\alpha cos\alpha-sin\alpha cos\alpha  +cos^{2}\alpha =0 \\2sin \alpha   (sin\alpha- cos\alpha) -cos\alpha (sin\alpha-cos\alpha )=0

So after solving above trigonometric terms we get

(2sin\alpha -cos\alpha )-(sin\alpha -cos\alpha )=0

Now first we solve

2sin\alpha -cos\alpha =0\\cos\alpha =2sin\alpha \\cos\alpha /sin\alpha =2\\cot\alpha =2

Similarly we can solve

sin\alpha -cos\alpha =0\\sin\alpha =cos\alpha \\cos\alpha /sin\alpha =1\\cot\alpha =1

Hence, we have find that

cot\alpha =1,2

Answered by jhilyrashmita1983
0

Answer:

Mark me brainliest as the answer is....

search from any other website

....

Similar questions