Math, asked by chetnagoyat312, 1 year ago

if 1+sin^2 theta=3 sin theta cos theta then prove that tan theta=1 or 1/2

Answers

Answered by palakdeeplidhar
183

Here is your answer:-


Attachments:
Answered by ColinJacobus
104

Answer:  Proved.

Step-by-step explanation:  Given that

1+\sin^2\theta=3\sin\theta\cos\theta.

We are to prove the following:

\tan \theta=1~\textup{or }\dfrac{1}{2}.

We will be using the following identities:

(i)~\dfrac{\sin\theta}{\cos\theta}=\tan\theta,\\\\(ii)~1+\tan^2\theta=\sec^2\theta,\\\\(iii)~\dfrac{1}{\cos\theta}=\sec\theta.

We have

1+\sin^2\theta=3\sin\theta\cos\theta\\\\\Rightarrow \dfrac{1+\sin^2\theta}{\cos^2\theta}=3\dfrac{\sin\theta\cos\theta}{\cos^2\theta}~~~~\textup{(dividing both sides by }\cos^2\theta)\\\\\Rightarrow \dfrac{1}{\cos^2\theta}+\dfrac{\sin^2\theta}{\cos^2\theta}=3\dfrac{\sin\theta}{\cos\theta}\\\\\Rightarrow \sec^2\theta+\tan^2\theta=3\tan\theta\\\\\Rightarrow 1+\tan^2\theta+\tan^2\theta=3\tan\theta\\\\\Rightarrow 2\tan^2\theta-3\tan\theta+1=0.~~~~~~~~~~~~(A)

Let us consider that\tan\theta=y. Then, equation (A) becomes

2y^2-3y+1=0\\\\\Rightarrow 2y^2-2y-y+1=0\\\\\Rightarrow 2y(y-1)-1(y-1)=0\\\\\Rightarrow (y-1)(2y-1)=0\\\\\Rightarrow y-1=0,~~~~~2y-1=0\\\\\Rightarrow y=1,~~~~~~~\Rightarrow y=\dfrac{1}{2}\\\\\Rightarrow \tan\theta=1,~~~~~\Rightarrow \tan\theta=\dfrac{1}{2}.

Hence proved.

Similar questions