if 1+ sin^2 theta= root 3 then prove that tan theta + cot theta = 1
Answers
Answered by
1
sin²thita =√3/2 =p/h
so using Pythagoras gorgeous theorem
h²= b²+ p²
1²= b²+ √3²
1=b²+3
b²= 2
b =√2
hence tan titha = p/ b
√3/2
so using Pythagoras gorgeous theorem
h²= b²+ p²
1²= b²+ √3²
1=b²+3
b²= 2
b =√2
hence tan titha = p/ b
√3/2
Similar questions