Math, asked by JayBhagat1613, 1 year ago

If 1 + sin^2 thetq = 3 sintheta costheta then prove that tan theta = 1

Answers

Answered by suchindraraut17
1

tan\theta=1

Step-by-step explanation:1+sin^2\theta=3sin\theta cos\theta

sin^2\theta+cos^2\theta+sin^2\theta=3sin\theta cos\theta

2sin^2\theta+cos^2\theta=3sin\theta cos\theta

We should divide it by cos^2\theta

\frac{2sin^2\theta}{cos^2\theta}+ \frac{cos^2\theta}{cos^2}=\frac{3sin\theta cos\theta}{cos^2\theta}</p><p>2tan^2\theta+1=3tan\theta

Letx=tan\theta

2x^2+1=3x

2x^2-3x+1=0

By solving this quadratic equation,

⇒(2t-1)(t-1)=0

Either,t=1/2 or 1

tan\theta=1/2 or1

tan\theta=1

Hence Proved

Similar questions