Math, asked by kumarshubham91806, 8 months ago

if 1+sin^2x=3sinxcosx then prove that tanx=1 or 1/2

Answers

Answered by pulakmath007
36

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \sf{ 1 +  { \sin}^{2} x = 3 \sin x \cos x\: }

TO PROVE

 \displaystyle \sf{  \tan x\: = 1 \:  \: or \:  \:  \frac{1}{2}  }

PROOF

 \sf{ 1 +  { \sin}^{2} x = 3 \sin x \cos x\: }

  \sf{Dividing \:  both  \: sides  \: by \:    { \cos}^{2} x \:  \:  \: we \: get}

 \displaystyle \:  \sf{  \frac{1}{{ \cos}^{2} x}  +  \frac{{ \sin}^{2} x}{{ \cos}^{2} x}   = 3  \:  \:   \frac{\sin x \cos x\: }{{ \cos}^{2} x} }

  \implies \: \sf{  { \sec}^{2}x +  { \tan}^{2} x = 3 \tan x \: }

  \implies \: \sf{  1 + { \tan}^{2}x +  { \tan}^{2} x = 3 \tan x \: }

  \implies \: \sf{  1 +2 { \tan}^{2}x    - 3 \tan x \: =  0}

  \implies \: \sf{  2 { \tan}^{2}x    - 3 \tan x \:  + 1=  0}

  \implies \: \sf{  2 { \tan}^{2}x -2  \tan x \: -  \tan x + 1=  0}

  \implies \: \sf{  2 { \tan}x (\tan x \: - 1)  - 1(\tan x  - 1)=  0}

  \implies \: \sf{   (2\tan x \: - 1) (\tan x  - 1)=  0}

  \implies \: \sf{ So  \: either   \: (2\tan x \: - 1) = 0 \:  \: or \:  \:  (\tan x  - 1)=  0}

Now

  \displaystyle \:  \: \sf{    \: (2\tan x \: - 1) = 0  \:  \: gives \:  \: \tan x  =  \frac{1}{2}  }

Again

  \implies \: \sf{  \: (\tan x \: - 1) = 0 \:  \:gives\:  \:  \tan x   =  1}

Therefore

 \displaystyle \sf{  \tan x\: = 1 \:  \: or \:  \:  \frac{1}{2}  }

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the value of

(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Answered by amitnrw
1

Given :  1+sin²x=3sinxcosx

To Find : prove that tanx=1 or 1/2

Solution:

Here is another way to solve other than above

1+sin²x=3sinxcosx

use 1 = sin²x + cos²x

=> sin²x + cos²x + sin²x=3sinxcosx

=> 2sin²x - 3sinxcosx  + cos²x = 0

=> 2sin²x - 2sinxcosx - sinxcosx  + cos²x = 0

=> 2sinx(sinx - cosx) - cosx(sinx - cosx) = 0

=> (2sinx - cosx)(sinx - cosx) = 0

=> 2sinx - cosx =  0 => sinx /cosx = 1/2 =>  tanx = 1/2

sinx - cosx = 0  => sinx = cosx => tanx = 1

tanx=1 or 1/2

QED

Hence proved

Learn More:

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

https://brainly.in/question/7871635

Maximum value of sin(cos(tanx)) is(1) sint (2)

https://brainly.in/question/11761816

Similar questions