If 1+ sin^2x = 3sinxcosx then prove that tanx = 1 or 1/2
Answers
Answered by
127
1 + sin²x = 3 sinx cosx
(1 + sin²x)² = 9 sin²x cos²x
1 + sin⁴x + 2 sin²x = 9 sin²x (1 - sin²x)
1 + sin⁴x + 2 sin²x = 9sin²x - 9sin⁴x
10sin⁴x - 7sin²x + 1 = 0
sin²x = [ -(-7) ± √((-7)² - 4(10)(1))] / 2(10)
sin²x = [ 7 ± √(49 - 40)] / 20
sin²x = [ 7 ± 3] / 20
sin²x = 1/2 or 1/5
sinx = ±1/√2 or ±1/√5
tanx
= sinx/cosx
= sinx/√(1 - sin²x)
= (±1/√2)/√(1 - 1/2) OR (±1/√5)/√(1 - 1/5)
= ±1 OR (±1/√5)/√(4/5)
= ±1 OR ±1/2
(1 + sin²x)² = 9 sin²x cos²x
1 + sin⁴x + 2 sin²x = 9 sin²x (1 - sin²x)
1 + sin⁴x + 2 sin²x = 9sin²x - 9sin⁴x
10sin⁴x - 7sin²x + 1 = 0
sin²x = [ -(-7) ± √((-7)² - 4(10)(1))] / 2(10)
sin²x = [ 7 ± √(49 - 40)] / 20
sin²x = [ 7 ± 3] / 20
sin²x = 1/2 or 1/5
sinx = ±1/√2 or ±1/√5
tanx
= sinx/cosx
= sinx/√(1 - sin²x)
= (±1/√2)/√(1 - 1/2) OR (±1/√5)/√(1 - 1/5)
= ±1 OR (±1/√5)/√(4/5)
= ±1 OR ±1/2
Answered by
99
Answer:
We have,
Dividing each term by cos²x,
We get,
( Because, sec²x = 1 + tan²x )
Let tan x = t,
If 2t-1=0 ⇒ t = 1/2
If t-1 = 0 ⇒ t =1,
Thus, tan x = 1/2 or tan x = 1.
Hence, proved.
Similar questions