Math, asked by abhipsaanndinee, 1 month ago

If 1+ sin α = 3 sina cosa, then values of cot a are (a) -1, 1 (b) 0,1 (c)1, 2 (d) -1,-1​

Answers

Answered by RvChaudharY50
70

Correct Question :- If 1+ sin²A = 3 * sin A * cos A, then values of cot A are (a) -1, 1 (b) 0,1 (c)1, 2 (d) -1,-1

Solution :-

→ 1 + sin²A = 3 * sin A * cos A

dividing both sides by cos²A,

→ (1 + sin²A)/cos²A = (3 * sin A * cos A)/cos²A

→ (1/cos²A) + (sin²A/cos²A) = 3 * (sin A / cos A)

→ sec²A + tan²A = 3 * tan A

→ (1 + tan²A) + tan²A = 3 * tan A

→ 2tan²A - 3tan A + 1 = 0

let, tan A = x ,

→ 2x² - 3x + 1 = 0

→ 2x² - 2x - x + 1 = 0

→ 2x(x - 1) - 1(x - 1) = 0

→ (x - 1)(2x - 1) = 0

→ x = 1 and (1/2) .

therefore,

→ tan A = 1 and (1/2)

hence,

→ cot A = 1 and 2 (Option C) (Ans.)

Learn more :-

prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA

https://brainly.in/question/15100532

help me with this trig.

https://brainly.in/question/18213053

Answered by pulakmath007
27

SOLUTION

GIVEN

 \displaystyle \sf  1 +  { \sin}^{2} A = 3 \sin A \cos A

TO DETERMINE

The value of cot A are

(a) - 1 , 1

(b) 0 , 1

(c) 1 , 2

(d) - 1 , - 1

EVALUATION

Here it is given that

 \displaystyle \sf  1 +  { \sin}^{2} A = 3 \sin A \cos A

We solve it as below

 \displaystyle \sf  1 +  { \sin}^{2} A = 3 \sin A \cos A

 \displaystyle \sf  \implies { \sin}^{2} A +  { \cos}^{2} A+  { \sin}^{2} A = 3 \sin A \cos A

 \displaystyle \sf  \implies { \cos}^{2} A+  2{ \sin}^{2} A  -  3 \sin A \cos A = 0

Dividing both sides by sin²A we get

 \displaystyle \sf  \implies { \cot}^{2} A+  2  -  3 \cot A = 0

 \displaystyle \sf  \implies { \cot}^{2} A  -  3 \cot A + 2 = 0

 \displaystyle \sf  \implies { \cot}^{2} A  -  2 \cot A  - \cot A+ 2 = 0

 \displaystyle \sf  \implies  \cot A (\cot A - 2) -( \cot A -  2) = 0

 \displaystyle \sf  \implies   (\cot A - 2) ( \cot A -  1) = 0

 \displaystyle \sf  \implies   \cot A = 2 \:,  \: 1

FINAL ANSWER

Hence the correct option is (c) 1 , 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

2. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions