if 1 + sin square alpha equals to 3 sin alpha cos alpha then show that the value of tan Alpha is 1 or 1 by 2
Answers
Given---> 1 + Sin²α = 3Sinα Cosα
To prove ---> Value of tanα is 1 or 1 / 2
Proof ---> ATQ ,
1 + Sin²α = 3 Sinα Cosα
Multiplying equation by 2 we get
=> 2 + ( 2Sin²α ) = 3 ( 2Sinα Cosα )
We have two formulee as follows
(1) Cos2A = 1 - 2Sin²A
2Sin²A = 1 - Cos2A
(2) Sin2A = 2 SinA CosA
Using these two formulee here we get
=> 2 + ( 1 - Cos2α ) = 3 Sin2α
=> 2 + 1 - Cos2α = 3 Sin2α
=> 3 - Cos2α = 3Sin2α
=> 3 Sin2α + Cos2α - 3 = 0
We have two formulee we get
Sin2A = 2 tanA / ( 1 + tan²A )
Cos2A = ( 1 - tan²A ) / (1 + tan²A )
Using these formulee here we get
=> 3 (2tanα /1 +tan²α) + (1-tan²α / 1 + tan²α ) -3 =0
Multiplying whole equation by ( 1 + tan²α ) we get
=> 3(2tanα ) + (1 - tan²α ) - 3 ( 1 + tan²α ) = 0
=> 6 tanα + 1 - tan²α - 3 - 3 tan²α = 0
=> - 4 tan²α + 6 tanα - 2 = 0
=> 2 tan²α - 3 tanα + 1 = 0
Using the method of splitting the middle term we get
=> 2 tan²α - ( 2 + 1 ) tanα + 1 = 0
=> 2 tan²α - 2 tanα - tanα + 1 = 0
Taking 2tanα common from first two term and (-1) common from next two terms we get
=> 2 tanα ( tanα - 1 ) - 1 ( tanα - 1 ) = 0
Taking ( tanα - 1 ) commn , we get
=> ( tanα - 1 ) ( 2tanα - 1 ) = 0
If tanα - 1 = 0
=> tanα = 1
If 2 tanα - 1 = 0
=> 2 tanα = 1
=> tanα = 1 / 2
Answer:
Here is your answer .
and