Math, asked by gayusarwar, 4 days ago

If 1+ sin² α = 3 sin α cos α, then values of cot α are a) -1, 1 b) 0,1 c) 1, 2 d) -1,-1​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:1 +  {sin}^{2} \alpha  = 3sin \alpha cos \alpha

Divide both sides by sin² α, we get

\rm :\longmapsto\:\dfrac{1 +  {sin}^{2}  \alpha }{ {sin}^{2} \alpha  }  = \dfrac{3sin \alpha cos \alpha }{ {sin}^{2} \alpha  }

\rm :\longmapsto\:\dfrac{1}{ {sin}^{2}  \alpha }  + 1 = \dfrac{3cos \alpha }{sin \alpha }

\rm :\longmapsto\: {cosec}^{2} \alpha  + 1 = 3cot \alpha

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {cosec}^{2}x -  {cot}^{2}x = 1 \: }}} \\

So, using this, we get

\rm :\longmapsto\: {cot}^{2} \alpha + 1  + 1 = 3cot \alpha

\rm :\longmapsto\: {cot}^{2} \alpha + 2 = 3cot \alpha

\rm :\longmapsto\: {cot}^{2} \alpha  - 3cot \alpha  + 2 = 0

\rm :\longmapsto\: {cot}^{2} \alpha  - 2cot \alpha - cot \alpha   + 2 = 0

\rm :\longmapsto\:cot \alpha (cot \alpha  - 2) - 1(cot \alpha  - 2) = 0

\rm :\longmapsto\: (cot \alpha  - 2)(cot \alpha  - 1) = 0

\rm\implies \:cot \alpha  = 2 \:  \: or \:  \: cot \alpha  = 1

  • Hence, option (c) is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by OoAryanKingoO78
1

Answer:

\large\underline{\bf{Question-}}

If 1+ sin² α = 3 sin α cos α, then values of cot α are

a) -1, 1

b) 0,1

c) 1, 2

d) -1,-1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\bf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:1 +  {sin}^{2} \alpha  = 3sin \alpha cos \alpha

Divide both sides by sin² α, we get

\rm :\longmapsto\:\dfrac{1 +  {sin}^{2}  \alpha }{ {sin}^{2} \alpha  }  = \dfrac{3sin \alpha cos \alpha }{ {sin}^{2} \alpha  }

\rm :\longmapsto\:\dfrac{1}{ {sin}^{2}  \alpha }  + 1 = \dfrac{3cos \alpha }{sin \alpha }

\rm :\longmapsto\: {cosec}^{2} \alpha  + 1 = 3cot \alpha

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {cosec}^{2}x -  {cot}^{2}x = 1 \: }}} \\

So, using this, we get

\rm :\longmapsto\: {cot}^{2} \alpha + 1  + 1 = 3cot \alpha

\rm :\longmapsto\: {cot}^{2} \alpha + 2 = 3cot \alpha

\rm :\longmapsto\: {cot}^{2} \alpha  - 3cot \alpha  + 2 = 0

\rm :\longmapsto\: {cot}^{2} \alpha  - 2cot \alpha - cot \alpha   + 2 = 0

\rm :\longmapsto\:cot \alpha (cot \alpha  - 2) - 1(cot \alpha  - 2) = 0

\rm :\longmapsto\: (cot \alpha  - 2)(cot \alpha  - 1) = 0

\rm\implies \:cot \alpha  = 2 \:  \: or \:  \: cot \alpha  = 1

Hence, option (c) is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions