Math, asked by lavishavyas, 10 months ago

if 1 + sin² A = 3 sin A cos A , prove that tan A = 1 or 1/2​

Answers

Answered by kaushik05
215

  \huge \red{\mathfrak{solution} }

Given :

 \star \bold{ 1 +  {sin}^{2}  \theta \:  = 3 sin \theta \: cos \theta \: }

To prove :

 \star \bold{ \: tan \theta \:  = 1 \: or \:  \frac{1}{2} }

 \rightarrow \: 1 +  {sin}^{2}  \theta \:  = 3 \: sin \theta \: cos \theta

Divide both sides by

 {cos}^{2}  \theta

 \rightarrow \:  \frac{1 +  {sin}^{2}  \theta}{ {cos}^{2} \theta }  =  \frac{3sin \theta cos \theta}{ {cos}^{2} \theta }  \\  \\  \rightarrow \:  {sec}^{2}  \theta +  {tan}^{2}  \theta \:  = 3tan \theta \\  \\  \rightarrow \: 1 +  {tan}^{2}  \theta \:  +  {tan}^{2}  \theta = 3tan \theta \\  \\  \rightarrow \: 2 {tan}^{2}  \theta - 3 \tan \theta \:  + 1 = 0

  \bold{let \: tan \theta \:  = x}

 \star \: 2 {x}^{2}  - 3x + 1 = 0 \\  \\  \star \: 2 {x}^{2}  - 2x - x + 1 = 0 \\  \\  \star \: 2x(x - 1) - 1(x - 1) = 0 \\  \\  \star \: (2x - 1)(x - 1) = 0

Now ,

 \leadsto \: 2x - 1 = 0 \\  \\   \leadsto \: x =  \frac{1}{2}

And

 \implies \: x - 1 = 0 \\  \\  \implies \: x = 1

Hence ,the values of X or tan@ is 1 and 1/2

 \huge{  \green{\mathfrak{proved}}}

Formula:

 \star \bold{  {sec}^{2}  \theta \:  -  {tan}^{2}  \theta \:  = 1}

 \star \bold { tan \theta \:  =  \frac{sin \theta}{cos \theta} }

Answered by Anonymous
89

Refer to the attachment

Attachments:
Similar questions