Math, asked by DeekshaSingh, 1 year ago

if 1+sin20=3sin0cos0 , then prove that tan0=1 or tan0=1/2

Attachments:

Answers

Answered by Swarup1998
21
\underline{\textsf{Proof :}}

\mathsf{Now,\:1+sin^{2}\theta=3\:sin\theta\:cos\theta}

\mathsf{Dividing\:both\:sides\:by\:cos^{2}\theta\:,\,cos\theta \neq 0}

\to \mathsf{\frac{1+sin^{2}\theta}{cos;{2}\theta}=\frac{3\:sin\theta\:cos\theta}{cos^{2}\theta}}

\to \mathsf{\frac{1}{cos^{2}\theta}+\frac{sin^{2}\theta}{cos^{2}\theta}=3\:\frac{sin\theta}{cos\theta}}

\to \mathsf{sec^{2}\theta+tan^{2}\theta=3\:tan\theta}

\to \mathsf{1+tan^{2}\theta+tan^{2}\theta=3\:tan\theta}

\to \mathsf{2\:tan^{2}\theta-3\:tan\theta+1=0}

\to \mathsf{2\:tan^{2}\theta-2\:tan\theta-tan\theta+1=0}

\to \mathsf{2\:tan\theta(tan\theta-1)-1(tan\theta-1)=0}

\to \mathsf{(tan\theta-1)(2\:tan\theta-1)=0}

\mathsf{Either\:tan\theta-1=0\:or,\:2\:tan\theta-1=0}

\implies \boxed{\mathsf{tan\theta=1\:,\:tan\theta=\frac{1}{2}}}

\textsf{Hence, proved.}

Swarup1998: Done!
DeekshaSingh: great
Swarup1998: :)
Similar questions