Math, asked by SharmaShivam, 11 months ago

If (1+sin2x)/(1-sin2x) = cot²(a+x) ∀ x ∈ R ~ (nπ + π/4), n ∈ N, then a can be

(a) π/4

(b) π/2

(c) 3π/4

(d) None of these

Answers

Answered by Anonymous
119

Question:

If (1+sin2x)/(1-sin2x) = cot²(a+x)

∀ x ∈ R ~ (nπ + π/4), n ∈ N, then a can be :

Formula's used:

 \sf1) \tan(x + y) =   \dfrac{ \tan x +  \tan y}{1 -  \tan x \times  \tan y}

 \sf 2)\tan(x - y) =   \dfrac{ \tan x - \tan y}{1 +\tan x \times  \tan y}

 \sf3)\sin{}^{2}x+\cos{}^{2}x=1

 \sf4)\sin2x=2\sin\:x\cos\:x

Solution :

 \sf \dfrac{1 +  \sin2x}{1 -  \sin2x}  =  \cot {}^{2} (a + x)

First solve

LHS  =  \sf \dfrac{1 +  \sin2x}{1 -  \sin2x}

\sf{=\frac{1+2\:sin\:x\:cos\:x}{1-2\:sin\:x\:cos\:x}}

 \sf =  \dfrac{ \sin {}^{2} x +  \cos {}^{2} x + 2 \sin x \cos x}{ \sin {}^{2}x +  \cos {}^{2} x - 2 \sin x \cos x }

 \sf =  \dfrac{( \cos x +  \sin x) {}^{2} }{( \cos x -  \sin x) {}^{2} }

Now divide both Numerator and denominator by cos²x

 \sf =  \dfrac{\frac{(\cos x +  \sin x) {}^{2} }{ \cos {}^{2} x} }{ \frac{ ( \cos x - \sin x) {}^{2} }{ \cos {}^{2} x} }

 \sf =  \dfrac{(1 +  \tan x) {}^{2} }{(1 -  \tan x) {}^{2} }

 \sf = ( \dfrac{1}{ \frac{1 -  \tan x}{1 +  \tan x} } ) {}^{2}

 \sf =  ( \dfrac{1}{ \frac{ - ( \tan x - 1)}{1 +  \tan x} } ) {}^{2}

 \sf = ( \dfrac{1}{  \frac{ \tan x - 1}{1 +  \tan x} }) {}^{2}

We know that tan 3π/4 = -1

 \sf =  (\dfrac{1}{  \frac{ \tan x +  \ \tan  \frac{3\pi}{4} }{1 -  \tan \frac{3\pi}{4} \times  \tan x } } ) {}^{2}

We know that tan(A+B) =( tanA+tanB)/1-tanAtanB

 \sf = ( \dfrac{1}{ \tan( \frac{3\pi}{4} + x)}) {}^{2}

 \sf =  \cot {}^{2} ( \frac{3\pi}{4} + x)

RHS  \sf = \cot {}^{2} (a + x)

On comparing LHS and RHS

 \sf \cot {}^{2} ( \frac{3\pi}{4}  + x) =  \cot {}^{2} (a + x)

 \sf \implies a =  \frac{3\pi}{4}

Correct option c) 3π/4


BrainlyRaaz: Perfect ✔️
Answered by Anonymous
40

Given that :-

If (1+sin2x)/(1-sin2x) = cot²(a+x) ∀ x ∈ R ~ (nπ + π/4), n ∈ N, then a can be

Solution :-

Firstly we'll solve the LHS .

LHS = \sf{ \frac{1 + \sin 2x}{1 - \sin 2x}} \\

We know that sin²x + cos²x = 1 and 2sinxcox = sin2x

\sf{\implies \frac{{\sin}^{2}x + {\cos}^{2}x + 2 \sin x \cos x }{{\sin}^{2}x + {\cos}^{2}x - 2 \sin x \cos x} } \\

Now we got the form ++2ab = (a+b)²

\sf{\implies {\sin}^{2}x + {\cos}^{2}x + 2 \sin x \cos x = {(\cos x + \sin x )}^{2}} \\

\sf{\implies {\sin}^{2}x + {\cos}^{2}x - 2 \sin x \cos x = {(\cos x - \sin x )}^{2}} \\

Now writing it in fraction again .

\sf{\implies \frac{{(\cos x + \sin x }^{2}}{{\cos x - \sin x}^{2} }} \\

Now multiplying and dividing by cos² x .

\sf{\implies \frac{{(\cos x + \sin x)}^{2}}{{(\cos x - \sin x )}^{2}} \times \frac{{\cos x}^{2} }{{\cos x}^{2}} } \\

→ (cosx + sinx/cox)²/ (cosx-sinx/cosx)²

\sf{\implies ({\frac{1 + \tan x }{1 - \tan x}}^{2}}) \\

\sf{\implies ({\frac{\frac{1}{1- \tan x }}{1 + \tan x}})^{2}} \\

\sf{\implies ({\frac{\frac{1}{\tan x - 1}}{1 + \tan x}})^{2}} \\

\sf{\implies ({\frac{\frac{1}{ \tan x - 1}}{1 - (-1) \tan x}})^{2}} \\

As we know that :-

→ tan 135° = tan ( 180-45°)

→ - tan(45°) = - 1 .

So replacing -1 by tan 135° or tan 3π/4

\sf{\implies ({\frac{\frac{1}{ \tan x - \tan \frac{3 \pi}{4}}}{1 -  \tan \frac{3 \pi}{4} \tan x}})^{2}} \\

→ tan(a+b) = tana + tanb/1 - tana . tanb

\sf{\implies ({\frac{1}{\tan( \frac{3 \pi }{4} + x}})^{2}} \\

\sf{\implies \frac{1}{\tan x} = \cot x } \\

\sf{\implies( {\cot \frac{3 \pi}{4} + x})^{2}} \\ = LHS .

Now comparing LHS and RHS .

\sf{\implies ({\cot \frac{3 \pi}{4} + x})^{2}} \\ = \sf ({\cot a + x})^{2} \\

\boxed{\sf{a = \frac{3 \pi}{4}}} \\


BrainlyRaaz: Nice♥️
Similar questions