If (1 + tan 5/(1 + tan 10°)(1 + tan 159........ (1 + tan 45º) (1 + tan 225º)=2 raise to k
then 'K' equals
Answers
Correct Question
If ( 1 + tan 5° ) ( 1 + tan 10° ) ( 1 + tan 15° ) . . . . . . . . . . . ( 1 + tan 45° ) = 2^k . Find the value of k ?
ANSWER
Given :
If ( 1 + tan 5° ) ( 1 + tan 10° ) ( 1 + tan 15° ) . . . . . . . . . . ( 1 + tan 45° ) = 2^k
Required to find :
- Value of k ?
Formula used :
tan ( A + B ) = tan A + tan B/1 - tan A tan B
Solution :
If ( 1 + tan 5° ) ( 1 + tan 10° ) ( 1 + tan 15° ) . . . . . . . . . . ( 1 + tan 45° ) = 2^k
We need to find the value of k ?
So,
Consider the LHS part
( 1 + tan 5° ) , ( 1 + tan 10° ) , ( 1 + tan 15° ) , . . . . . . . . . . . . . . , ( 1 + tan 45° )
This can be written as ;
[ ( 1 + tan 5° ) ( 1 + tan 40° ) ] [ ( 1 + tan 10° ) ( 1 + tan 35° ) ] [ ( 1 + tan 15° ) ( 1 + tan 30° ) ] [ ( 1 + tan 20° ) ( 1 + tan 25° ) ] ( 1 + tan 45° )
Now,
We know that ;
tan ( A + B ) = tan A + tan B/1 - tan A tan B
This implies ;
tan A + tan B = tan ( A + B ) x 1 - tan A tan B
Here, let's consider the first part of the LHS as A .
➜ A = ( 1 + tan 5° ) ( 1 + tan 40° )
Solving further !
➜ 1 ( 1 + tan 40° ) + tan 5° ( 1 + tan 40° )
➜ 1 + tan 40° + tan 5° + tan 5° tan 40°
Here,
tan 40° + tan 5° is in the form of tan A + tan B . So, from the above formula we can write this as ;
➜ 1 + tan ( 40° + 5° ) x 1 - tan 40° tan 5° + tan 5° tan 40°
➜ 1 + tan 45° x 1 - tan 40° tan 5° + tan 5° tan 40°
Since,
- tan 45° = 1
➜ 1 + 1 x 1 - tan 40° tan 5° + tan 5° tan 40°
- tan 40° tan 5° , tan 40° tan 5° get's cancelled
➜ 1 + 1
➜ 2
Similarly,
Consider the 2nd part in the LHS part as B
➜ B = ( 1 + tan 10° ) ( 1 + tan 35° )
➜ 1 ( 1 + tan 35° ) + tan 10° ( 1 + tan 35° )
➜ 1 + tan 35° + tan 10° + tan 35° tan 10°
➜ 1 + tan ( 35° + 10° ) x 1 - tan 35° tan 10° + tan 10° tan 35°
➜ 1 + tan 45°
➜ 1 + 1
➜ 2
Similarly,
Consider the 3rd part in the LHS part as C
➜ C = ( 1 + tan 15° ) ( 1 + tan 30° )
➜ 1 ( 1 + tan 30° ) + tan 15° ( 1 + tan 30° )
➜ 1 + tan 30° + tan 15° + tan 30° tan 15°
➜ 1 + tan ( 30° + 15° ) x - 1 - tan 30° tan 15° + tan 30° tan 15°
➜ 1 + tan 45°
➜ 1 + 1
➜ 2
Similarly,
Consider the 4th part in the LHS part as D
➜ D = ( 1 + tan 20° ) ( 1 + tan 25° )
➜ 1 ( 1 + tan 25° ) + tan 20° ( 1 + tan 25° )
➜ 1 + tan 25° + tan 20° + tan 25° tan 20°
➜ 1 + tan ( 25° + 20° ) x 1 - tan 25° tan 20° + tan 25° tan 20°
➜ 1 + tan 45°
➜ 1 + 1
➜ 2
Similarly,
Consider the 5th part in the LHS part as E
➜ E = ( 1 + tan 45° )
➜ 1 + 1
➜ 2
Now,
Let's integrate the whole !
➜ [ ( 1 + tan 5° ) ( 1 + tan 40° ) ] [ ( 1 + tan 10° ) ( 1 + tan 35° ) ] [ ( 1 + tan 15° ) ( 1 + tan 30° ) ] [ ( 1 + tan 20° ) ( 1 + tan 25° ) ] ( 1 + tan 45° )
➜ A x B x C x D X E
➜ 2 x 2 x 2 x 2 x 2
➜ 2^5
Equate the LHS and RHS
➜ 2^5 = 2^k
Since bases are equal powers are also equal
➜ k = 5
Therefore,
- Value of k = 5