if (1+tanα tanβ)^2+(tanα-tanβ)^2=k,then 2k.cos^2α.cos^2βis
Answers
Step-by-step explanation:
Given :-
(1+Tan α Tan β)²+(Tan α-Tan β)²=k
To find :-
Find the value of 2k.Cos²α . Cos²β ?
Solution :-
Given that
(1+Tan α Tan β)²+(Tan α-Tan β)²=k
Now,
On taking (1+Tan α Tan β)²
=> 1² + Tan² α Tan² β + 2 Tan α Tan β
Since (a+b)² = a²+2ab+b²
=> 1+ Tan² α Tan² β + 2 Tan α Tan β ------(1)
On taking (Tan α-Tan β)²
=> Tan² α+Tan² β -2 Tan α Tan β -------(2)
Since (a-b)² = a²-2ab+b²
On adding (1) & (2) then
1+ Tan² α Tan² β + 2 Tan α Tan β + Tan² α+Tan² β -2 Tan α Tan β
=> 1+ Tan² α Tan² β + Tan² α+Tan² β
=> (1+Tan² α )+Tan² β ( Tan² α+1)
=> (1+Tan² α )(1+Tan² β )
=> Sec² α Sec² β
Since Sec² A - Tan² A = 1
Now,
(1+Tan α Tan β)²+(Tan α-Tan β)²=k
=> Sec² α Sec² β = k
=> (1/Cos²α)(1/ Cos² β ) = k
=> 1 / (Cos²α Cos² β ) = k
=> 1 = k (Cos²α Cos² β )
On multiplying with 2 both sides then
=> 2 = 2k Cos²α Cos² β
=> 2k Cos²α Cos² β = 2
Answer:-
The value of 2k Cos²α Cos² β for the given problem is 2
Used formulae:-
→ (a+b)² = a²+2ab+b²
→ Sec² A - Tan² A = 1
→ Sec A = 1/ Cos A
→(a-b)² = a²-2ab+b²