Math, asked by shyamalavithi, 11 months ago

If 1+tan theta=√2 then cot theta-1=

Answers

Answered by MaheswariS
3

\textbf{Given:}

1+tan\theta=\sqrt{2}

\implies\,tan\theta=\sqrt{2}-1

\text{Now,}\,cot\theta

=\displaystyle\frac{1}{tan\theta}

=\displaystyle\frac{1}{\sqrt{2}-1}{\times}\frac{\sqrt{2}+1}{\sqrt{2}+1}

=\displaystyle\frac{\sqrt{2}+1}{(\sqrt{2})^2-1^2}

=\displaystyle\frac{\sqrt{2}+1}{2-1}

=\sqrt{2}+1

\implies\,cot\theta=\sqrt{2}+1

\implies\,cot\theta-1=\sqrt{2}

\therefore\boxed{\bf\,cot\theta-1=\sqrt{2}}

Find more:

If tan theta equals to root 2 -1 then sin Theta.cos Theta =?​

https://brainly.in/question/8655199#

Answered by AnkitaSahni
2

Value of cotθ -1 =√2

•As, given

1 + tanθ = √2

tanθ =√2-1

• We know that

tanθ= 1/cotθ

•Now , 1/cotθ =√2-1

cotθ =1/(√2-1)

•On Rationalizing the denominator we will get

cotθ =(√2+1)/(√2-1)(√2+1)

cotθ =(√2+1)/(2-1)

cotθ =(√2+1)

Now we get , cotθ =√2+1

hence , cotθ -1 = √2

Similar questions