If(1+tan5)(1+tan10).....(1+tan45)=2^k
Then k=?
Answers
Answer:
we know :- tan45° = 1, and tan(A + 45°) =
then, tan(A + 45)(1 - tanAtan45) = (tanA + 1)
Now, (1 + tan5)(1 + tan10)(1 + tan15).........(1 + tan45) = 2^k
(1 + tan5)(1 + tan40) * (1 + tan10)(1 + tan35) * (1 + tan15)(1 + tan30) * (1 + tan20)(1 + tan25) * (1 + 1) = 2^k
[1 + tan40tan5 + (tan5 + tan40)] * [1 + tan10tan35 + (tan35 + tan10)] * [1 + tan20tan25 + (tan20 + tan25)] * 2 = 2^k
[1 + tan40tan5 + tan(40 + 5)(1 - tan40tan5)] * [1 + tan10tan35 + tan(10 + 35)(1 - tan10tan35)] * [1 + tan20tan25 + tan(20 + 25)(1 - tan20tan25)] * 2 = 2^k
[1 + tan40tan5 + tan45(1 - tan40tan5)] * [1 + tan10tan35 + tan45(1 - tan10tan35)] * [1 + tan20tan25 + tan45(1 - tan20tan25)] * 2 = 2^k
[1 + tan40tan5 + 1 - tan40tan5] * [1 + tan10tan35 + 1 - tan10tan35] * [1 + tan20tan25 + 1 - tan20tan25] * 2 = 2^k
2 * 2 * 2 * 2 = 2^k
2^4 = 2^k
On comparing both side of base,
we get , k = 4
I HOPE ITS HELP YOU DEAR,
THANKS
Click to let others know, how helpful is it
3.0
10 votes
THANKS5
Report
The BrainAnswerer
Can't find what you're looking for?
ASK YOUR QUESTION
saanvisinghgenius
Rank: Ambitious
288/500
2/5
Hope it helps you