Math, asked by NeverGibup, 5 months ago

If

/
+

/
= −1 then find
( {a}^{3}  -  {b}^{3} )

Answers

Answered by mohanddr
2

Answer:

Answer:

Given an equation: a+\frac{1}{b}=3a+

b

1

=3 , b+\frac{1}{c}=4b+

c

1

=4 and c+\frac{1}{a} =\frac{9}{11}c+

a

1

=

11

9

.

Sum of these equation is, a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7+\frac{9}{11} =\frac{86}{11}a+b+c+

a

1

+

b

1

+

c

1

=7+

11

9

=

11

86

.

Product of the above equation: (a+\frac{1}{b})\cdot (b+\frac{1}{c})\cdot (c+\frac{1}{a})(a+

b

1

)⋅(b+

c

1

)⋅(c+

a

1

)

On Simplify:

abc+a+c+\frac{1}{b} +b+\frac{1}{c}+\frac{1}{a} +\frac{1}{abc} = \frac{108}{11}abc+a+c+

b

1

+b+

c

1

+

a

1

+

abc

1

=

11

108

or

abc+(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c})(a+b+c+

a

1

+

b

1

+

c

1

) +\frac{1}{abc}

abc

1

= \frac{108}{11}

11

108

.

abc+\frac{86}{11}+\frac{1}{abc}=\frac{108}{11}abc+

11

86

+

abc

1

=

11

108

abc+\frac{1}{abc} = \frac{108}{11}-\frac{86}{11} = \frac{108-86}{11} =\frac{22}{11}abc+

abc

1

=

11

108

11

86

=

11

108−86

=

11

22

⇒ abc+\frac{1}{abc} =2abc+

abc

1

=2 .

Let abc be x

then; x+\frac{1}{x} = 2x+

x

1

=2 or

x^2-2x+1=0x

2

−2x+1=0

On solving the quadratic equation; we have,

x=1 or

a\times b \times c=1a×b×c=1

Similar questions