Math, asked by akash2825, 8 days ago

If 1, w,w2 are cube roots of unity then evaluate (1 - w4 +w8) (1 - w8 + w16).​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

We know that

\rm :\longmapsto\:1, \:  \omega, \:  { \omega}^{2}  \: are \: cube \: roots \: of \: unity \: then

\boxed{ \bf{ \: 1 +  \omega \:  +  { \omega}^{2}  = 0}}

\boxed{ \bf{ \: 1 +  \omega =  -  { \omega}^{2}}}

\boxed{ \bf{ \: 1 +  { \omega}^{2}  =  \omega}}

\boxed{ \bf{ \:  \omega +  { \omega}^{2}  =  - 1}}

\boxed{ \bf{ \:  { \omega}^{3} = 1}}

Now, Consider

\red{\rm :\longmapsto\:(1 -  { \omega}^{4} +  { \omega}^{8})(1 -  { \omega}^{8}  +  { \omega}^{16})}

can be rewritten as

\rm \:  =(1  -  { \omega}^{3}. \omega  +  { \omega}^{6}. { \omega}^{2})(1 -  { \omega}^{6}. { \omega}^{2} +  { \omega}^{15}. \omega)

We know,

\boxed{ \bf{ \:  { \omega}^{3} =  { \omega}^{6}  =  { \omega}^{15}  = 1}}

So, using this, we get

\rm \:  =  \:  \: (1 -  \omega +  { \omega}^{2} )(1 -  { \omega}^{2}  +  \omega)

can be re-arranged as

\rm \:  =  \:  \: (1 +  { \omega}^{2} -  \omega)(1 +  \omega -  { \omega}^{2})

\rm \:  =  \:  \: ( -  \omega -  \omega)( -  { \omega}^{2} -  { \omega}^{2})

\rm \:  =  \:  \: ( - 2 \omega)( - 2 { \omega}^{2})

\rm \:  =  \:  \:  {4 \omega}^{3}

\rm \:  =  \:  \: 4 \times 1

\rm \:  =  \:  \: 4

Hence,

\red{\bf :\longmapsto\:(1 -  { \omega}^{4} +  { \omega}^{8})(1 -  { \omega}^{8}  +  { \omega}^{16}) = 4}

Additional Information :-

Cube roots of unity

\rm :\longmapsto\:x =  {\bigg(1\bigg) }^{\dfrac{1}{3} }

On cubing both sides, we get

\rm :\longmapsto\: {x}^{3} = 1

\rm :\longmapsto\: {x}^{3}  - 1 = 0

\rm :\longmapsto\:(x - 1)( {x}^{2} + x + 1) = 0

\bf\implies \:x = 1

or

\bf\implies \: {x}^{2} + x + 1 = 0

So, using Quadratic formula, we get

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2} - 4 \times 1 \times 1 } }{2 \times 1}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 - 4} }{2 }

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ - 3} }{2 }

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  i \: \sqrt{3} }{2 }

So, it means, x have the values

\rm :\longmapsto\:x = \: 1 \:  \: or \:  \dfrac{ - 1 \:  +  \:  i \: \sqrt{3} }{2 } \:  \: or \:  \: \dfrac{ - 1 \:   -   \:  i \: \sqrt{3} }{2 }

So, here,

\rm :\longmapsto\: \omega = \dfrac{ - 1 \:  +  \:  i \: \sqrt{3} }{2 }

and

\rm :\longmapsto\: { \omega}^{2}  = \dfrac{ - 1 \:   -  \:  i \: \sqrt{3} }{2 }

Similar questions