Math, asked by kondaveetishiva, 1 year ago

If 1,w,w2 are the cube roots of unity then (x+y+z)(x+yw+zw2)(z+yw2+zw)=

Answers

Answered by MaheswariS
2

\underline{\textsf{Given:}}

\mathsf{1,w,w^2}\;\textsf{are cube roots of unity}

\underline{\textsf{To find:}}

\mathsf{(x+y+z)\,(x+yw+zw^2)(x+yw^2+zw)}

\underline{\textsf{Solution:}}

\textsf{since}\,\mathsf{1,w,w^2}\;\textsf{are cube roots of unity, we have}

\mathsf{1+w+w^2=0\;\;\&\;\;w^3=1}

\textsf{Consider,}

\mathsf{(x+y+z)\,(x+y\,w+z\,w^2)(x+y\,w^2+z\,w)}

\mathsf{=(x+y+z)\,(x^2+xy\,w^2+xz\,w+xy\,w+y^2\,w^3+yz\,w^2+xz\,w^2+yz\,w^4+z^2\,w^3)}

\textsf{Using,}\;\;\boxed{\mathsf{w^3=1}}

\mathsf{=(x+y+z)\,(x^2+xy\,w^2+xz\,w+xy\,w+y^2+yz\,w^2+xz\,w^2+yz\,w+z^2)}

\mathsf{=(x+y+z)\,(x^2+y^2+z^2+xy(w+w^2)+yz(w+w^2)+zx(w+w^2))}

\textsf{using,}\;\;\boxed{\mathsf{1+w+w^2=0\implies\;w+w^2=-1}}

\mathsf{=(x+y+z)\,(x^2+y^2+z^2+xy(-1)+yz(-1)+zx(-1))}

\mathsf{=(x+y+z)\,(x^2+y^2+z^2-xy-yz-zx)}

\mathsf{=x^3+y^3+z^3-3\,xyz}

\underline{\textsf{Answer:}}

\mathsf{(x+y+z)\,(x+yw+zw^2)(x+yw^2+zw)=x^3+y^3+z^3-3\,xyz}

Find more:

X=a+b y=aw+bw^2 z=aw+bw^2 omega is cube root of unity calculate xyz

https://brainly.in/question/3037570

Similar questions