If 1/x+1/y ∝1/x+y, then prove that (x+y)∝(x-y)
Answers
Answered by
1
Answer:
1/y-1/x∝1/x-y
Or (x-y)/xy=k×1/(x-y)(where k≠0)
Or (x-y)²=kxy
Or x²-2xy+y²=kxy
Or x²+y²=(k+2)xy
Or (x²+y²)/xy=k+2
Or x/y+y/x=k+2
Or (x/y)²+1=c(x/y) (where c=k+2 =constant)
Or (x/y)²-2(x/y)(c/2)+c²/4+1-c/4=0
Or (x/y-c/2)²=(c²/4)–1
Or x/y-c/2=±√(c²-4)/2
Or x/y=(c/2)±√(c²-4)/2
Or x/y=constant
Therefore x∝y
Step-by-step explanation:
it is with step
Similar questions