If (1/x-1/y)infinity 1/x-y then
options (a)(x+y)infinity xy,(b)x^2+y^2 infinity xy,(c)x^2+y^2i infinity 1/x^2y^2 and (d)(x+y) infinity 1/xy
Answers
Answered by
2
Answer:
x² + y² ∝ xy
Step-by-step explanation:
If (1/x-1/y)infinity 1/x-y then
options (a)(x+y)infinity xy,(b)x^2+y^2 infinity xy,(c)x^2+y^2i infinity 1/x^2y^2 and (d)(x+y) infinity 1/xy
1/x - 1/y ∝ 1/(x - y)
Taking xy common in LHS in denominator
=> (y - x)/xy ∝ 1/(x - y)
x- y = -(y -x)
=> (y - x)/xy ∝ -1/(y-x)
Cross multiplication
=> (y - x)² ∝ -xy
=> x² + y² - 2xy ∝ -xy
Adding 2xy both sides
=> x² + y² ∝ xy
option b is correct
Similar questions