Math, asked by sarkaraditya0529, 1 year ago

If (1/x-1/y)infinity 1/x-y then
options (a)(x+y)infinity xy,(b)x^2+y^2 infinity xy,(c)x^2+y^2i infinity 1/x^2y^2 and (d)(x+y) infinity 1/xy

Answers

Answered by amitnrw
2

Answer:

x² + y²  ∝  xy

Step-by-step explanation:

If (1/x-1/y)infinity 1/x-y then

options (a)(x+y)infinity xy,(b)x^2+y^2 infinity xy,(c)x^2+y^2i infinity 1/x^2y^2 and (d)(x+y) infinity 1/xy

1/x  - 1/y  ∝  1/(x - y)

Taking xy common in LHS in denominator

=> (y - x)/xy ∝  1/(x - y)

x- y = -(y -x)

=> (y - x)/xy ∝  -1/(y-x)

Cross multiplication

=> (y - x)² ∝  -xy

=> x² + y² - 2xy ∝  -xy

Adding 2xy both sides

=>  x² + y²  ∝  xy

option b is correct

Similar questions