If 1/x+2,1/x+3and 1/x+5 are in AP. Find the value of x.
Answers
Answered by
10
Heya !!!
This is your answer.
Given AP :-
![\frac{1}{x + 2}.. \frac{1}{x + 3} .. \frac{1}{x + 5} ...... \frac{1}{x + 2}.. \frac{1}{x + 3} .. \frac{1}{x + 5} ......](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bx+%2B+2%7D..+%5Cfrac%7B1%7D%7Bx+%2B+3%7D+..+%5Cfrac%7B1%7D%7Bx++%2B+5%7D+......)
Here,
First term, a = 1/(X+2).
We know that a2 - a1 = a3 - a2. ......(I)
So, we will use this to find the value of x.
Let us find
a2-a1
![\frac{1}{x + 3} - \frac{1}{x + 1} \\ = \frac{(x + 1) - (x + 3)}{(x + 1)(x + 3)} \\ = > x + 1 - x - 3 = {x}^{2} + (1 + 3)x + 3 \\ = > - 2 = {x}^{2} + 4x + 3 \\ = > {x}^{2} + 4x + 5 = 0 \frac{1}{x + 3} - \frac{1}{x + 1} \\ = \frac{(x + 1) - (x + 3)}{(x + 1)(x + 3)} \\ = > x + 1 - x - 3 = {x}^{2} + (1 + 3)x + 3 \\ = > - 2 = {x}^{2} + 4x + 3 \\ = > {x}^{2} + 4x + 5 = 0](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bx+%2B+3%7D++-+++%5Cfrac%7B1%7D%7Bx+%2B+1%7D+++%5C%5C++%3D++%5Cfrac%7B%28x+%2B+1%29+-+%28x+%2B+3%29%7D%7B%28x+%2B+1%29%28x+%2B+3%29%7D++%5C%5C++%3D+%26gt%3B+++x+%2B+1+-+x+-+3+%3D++%7Bx%7D%5E%7B2%7D++%2B+%281+%2B+3%29x+%2B+3+%5C%5C+%3D++%26gt%3B++-+2++%3D++%7Bx%7D%5E%7B2%7D++%2B+4x+%2B+3+%5C%5C++%3D++%26gt%3B+++%7Bx%7D%5E%7B2%7D++%2B+4x+%2B+5+%3D+0)
Hence, x² + 4x +5 = 0. ........(ii).
Now,
a3 - a2
![\frac{1}{x + 5} - \frac{1}{x + 3} \\ = > \frac{(x + 3) - (x + 5)}{(x + 5)(x + 3)} \\ = > x + 3 - x - 5 = {x}^{2} + (5 + 3)x + 3 \times 5 \\ = > - 2= {x}^{2} + 8x + 15 \\ = > {x}^{2} + 8x + 17 = 0. \frac{1}{x + 5} - \frac{1}{x + 3} \\ = > \frac{(x + 3) - (x + 5)}{(x + 5)(x + 3)} \\ = > x + 3 - x - 5 = {x}^{2} + (5 + 3)x + 3 \times 5 \\ = > - 2= {x}^{2} + 8x + 15 \\ = > {x}^{2} + 8x + 17 = 0.](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bx+%2B+5%7D++-+++%5Cfrac%7B1%7D%7Bx+%2B+3%7D+++%5C%5C++%3D++%26gt%3B++%5Cfrac%7B%28x+%2B+3%29+-+%28x+%2B+5%29%7D%7B%28x+%2B+5%29%28x+%2B+3%29%7D++%5C%5C++%3D+%26gt%3B+++x+%2B+3+-+x+-+5++%3D++%7Bx%7D%5E%7B2%7D++%2B+%285+%2B+3%29x+%2B+3+%5Ctimes+5+%5C%5C+++%3D++%26gt%3B++-+2%3D++%7Bx%7D%5E%7B2%7D++%2B+8x+%2B+15++%5C%5C++%3D++%26gt%3B++%7Bx%7D%5E%7B2%7D++%2B+8x+%2B+17+%3D+0.)
Hence, x² +8x + 17 = 0. .......(iii).
From equation (i), (ii) and (iii), we get
x² +4x + 5 = x² + 8x + 17
=> 4x + 5 = 8x + 17
=> 8x - 4x = 5 - 17
=> 4x = -12
=> x = -12/4
x = -3.
Hence, the value of x is -3.
Hope you got the answer.
This is your answer.
Given AP :-
Here,
First term, a = 1/(X+2).
We know that a2 - a1 = a3 - a2. ......(I)
So, we will use this to find the value of x.
Let us find
a2-a1
Hence, x² + 4x +5 = 0. ........(ii).
Now,
a3 - a2
Hence, x² +8x + 17 = 0. .......(iii).
From equation (i), (ii) and (iii), we get
x² +4x + 5 = x² + 8x + 17
=> 4x + 5 = 8x + 17
=> 8x - 4x = 5 - 17
=> 4x = -12
=> x = -12/4
x = -3.
Hence, the value of x is -3.
Hope you got the answer.
Similar questions