If √1-x^2+√1-y^2=a(x-y),then dy/dx=?
Answers
Answered by
4
Answer:
Learn from the attachment
Hope it helps
Attachments:
Answered by
0
Step-by-step explanation:
Given :
√1-x² +√1-y²=a(x-y)
To Prove :
dy/dx=√(1-y²)/(1-x²)
Solution :
√1-x² +√1-y²=a(x-y)
•Let x = sinA & y = sinB
•√1-(sinA)² +√1-(sinB)²=a(sinA-sinB)
√cos²A + √cos²B = a(sinA-sinB)
cosA + cosB = a(cosA-cosB)
•2cos[(A+B)/2 ]cos[(A-B)/2] = 2acos[(A+B)/2 ]sin[(A-B)/2]
•cos(A-B)/2 = asin(A+B)/2
[cos(A-B)/2]/sin[(A-B)/2] = a
•cot(A-B)/2 = a
(•A-B)/2 = cot^-1a
A - B = 2cot^-1(a)
•sin^-1(x) - sin^-1(y) = 2cot^-1(a)
•Differentiating both sides
1/√(1-x²) - 1/√(1-y²) . dy/dx = 0
1/√(1-y²) . dy/dx = 1/√(1-x²)
dy/dx = √(1-y²)/√(1-x²)
Hence proved .
Similar questions