Math, asked by tusharkumar832, 1 year ago

If √1+x^2 sin = x then prove that tan^2 + cot^2 = x^2 + 1/x^2

Answers

Answered by eshita287
0

Answer:

See Below

Explanation:

L

H

S

:

2

tan

(

x

2

)

1

+

tan

2

(

x

2

)

=

2

sin

(

x

2

)

cos

(

x

2

)

sec

2

(

x

2

)

-> use the property

1

+

tan

2

x

=

sec

2

x

=

2

sin

(

x

2

)

cos

(

x

2

)

1

cos

2

(

x

2

)

=

2

sin

(

x

2

)

cos

(

x

2

)

cos

2

(

x

2

)

1

=

2

sin

(

x

2

)

cos

(

x

2

)

cos

2

(

x

2

)

1

=

2

sin

(

x

2

)

cos

(

x

2

)

=

sin

2

(

x

2

)

->use the property

sin

2

x

=

2

sin

x

cos

x

=

sin

2

(

x

2

)

=

sin

x

=

R

H

S

Similar questions