If (1/x^3+1/y^3)varies as 1/(x^3+y^3) then prove that x varies as y
Answers
Answered by
3
Step-by-step explanation:
1/x^3+ 1/y^3=k/(x^3 +y^3)
or,
(x^3+ y^3)/x^3 + (x^3+y^3)/y^3 -k=0
or,
1 + y^3/x^3 + x^3/y^3 +1 -k=0
or,
1+p+1/p +1-k=0 [ putting y^3/x^3 = p]
or,
(p^2 +1) /p +3 -k= 0
or,
p^2 +1+ 2p -kp= 0
or,
p^2 -(2+k) p+1 =0
so, p= (2+k) ± √{(2+k)^2 -4}/ 4 = constant= m (let constant be m)
so, y^3/ x^3 =k
or,
y/x = constant
so,
x veries y
[ proved ]
Similar questions