Math, asked by candygorl123, 6 months ago

if 1/x + 6/y = 9/4 and 8/x - 3/y = 3, then x and y are?

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\mathsf{\dfrac{1}{x}+\dfrac{6}{y}=\dfrac{9}{4}}

\mathsf{\dfrac{8}{x}-\dfrac{3}{y}=3}

\underline{\textsf{To find:}}

\textsf{x and y}

\underline{\textsf{Solution:}}

\textsf{Take,}

\mathsf{\dfrac{1}{x}=a\;\;\&\;\;\dfrac{1}{y}=b}

\textsf{Then,}

\mathsf{a+6b=\dfrac{9}{4}}....(1)

\mathsf{8a-3b=3}......(2)

\mathsf{(1)+2{\times}(2)\implies}

\mathsf{a+6b=\dfrac{9}{4}}

\mathsf{16a-6b=6}

\mathsf{17a=6+\dfrac{9}{4}}

\mathsf{17a=\dfrac{24+9}{4}}

\mathsf{17a=\dfrac{33}{4}}

\implies\mathsf{a=\dfrac{33}{68}}

\textsf{Put}\;\mathsf{a=\dfrac{33}{68}}

\mathsf{\dfrac{33}{68}+6b=\dfrac{9}{4}}

\mathsf{6b=\dfrac{9}{4}-\dfrac{33}{68}}

\mathsf{6b=\dfrac{153-33}{68}}

\mathsf{6b=\dfrac{120}{68}}

\mathsf{b=\dfrac{20}{68}}

\implies\mathsf{b=\dfrac{5}{17}}

\mathsf{a=\dfrac{33}{68}}

\mathsf{\dfrac{1}{x}=\dfrac{33}{68}}

\implies\boxed{\mathsf{x=\dfrac{68}{33}}}

\mathsf{b=\dfrac{5}{17}}

\mathsf{\dfrac{1}{y}=\dfrac{5}{17}}

\implies\boxed{\mathsf{y=\dfrac{17}{5}}}

\underline{\textsf{Answer:}}

\mathsf{x=\dfrac{68}{33}\;\;\&\;\;y=\dfrac{17}{5}}

Find more:

Solve the following pair of equations by reducing them to a pair of linear equation.

5/x+y +1/x-y =2 and

10/x+y+3/x-y =5​

https://brainly.in/question/15071188

Similar questions