Math, asked by jatinkohli152, 10 months ago

If (1 + x)n = a0 + a1x + a2x2 + a3x3 +...........+ anxn, prove that 2n = (a0 - a2 + a4-......) + (a1 -
a3 + a5-......).

Answers

Answered by amitnrw
4

Given :  (1 + x)ⁿ   = a₀  + a₁x  + a₂x²  + a₃x³  + ...........................+ aₙxⁿ

To Find : Prove that 2ⁿ =  ( a₀  - a₂ + a₄ - ........)²  +  (a₁  - a₃ + a₅ - ................)²

Solution:

(1 + x)ⁿ   = a₀  + a₁x  + a₂x²  + a₃x³  + ...........................+ aₙxⁿ

x = i

=> ( 1 + i)ⁿ  = a₀  + a₁(i)  + a₂(i)²  + a₃(i)³  + ...........................+ aₙ(i)ⁿ

=> (  1 + i)ⁿ  = a₀  + a₁i  - a₂ - a₃i  + ...........................+ aₙ  

=>  (  1 + i)ⁿ  =  ( a₀  - a₂ + a₄ - ........)  + i (a₁  - a₃ + a₅ - ................)

1 + i  = √2 ( 1/ √2  + i/ √2 )

=> 1 + i  =√2  ( Cos(π/4) + iSinπ/4)

(  1 + i)ⁿ    =  {√2 ( Cos(π/4) + iSinπ/4) }ⁿ

=> (  1 + i)ⁿ   = (√2)ⁿ  (  Cos(nπ/4)  + iSin(nπ/4)

Equating imaginary & real part

( a₀  - a₂ + a₄ - ........) =  (√2)ⁿ  (  Cos(nπ/4) )

(a₁  - a₃ + a₅ - ................) = (√2)ⁿ  (  Sin(nπ/4) )

( a₀  - a₂ + a₄ - ........)²  +  (a₁  - a₃ + a₅ - ................)²  =( (√2)ⁿ)² (Cos²(nπ/4)) + ( (√2)ⁿ)² (Sin²(nπ/4))

= 2ⁿ  ( Cos²(nπ/4) + Sin²(nπ/4))

= 2ⁿ ( 1)

= 2ⁿ

QED

Hence Proved

2ⁿ =  ( a₀  - a₂ + a₄ - ........)²  +  (a₁  - a₃ + a₅ - ................)²

Learn More:

The middle term in the expansion of ( 1 - (1/X))^n(1-X)^n in the ...

https://brainly.in/question/13915310

if three consecutive terms in the expansion of (1+x)^n are in the ratio ...

https://brainly.in/question/3046410

Similar questions