If (1+x+x2)n = a0 +a1x +a2x2 + a3x3+ .......+ a2nx2n,show thata0+a3+a6 + .......... = 3n-1
Answers
Given :
(1+x+x²)ⁿ = a₀ +a₁x +a₂x₂+ a₃x³+ .......+ a₂ₙx²ⁿ
To Find : ,show that a₀ + a₃ +.....=3ⁿ⁻¹
Solution:
(1+x+x²)ⁿ = a₀ +a₁x +a₂x₂+ a₃x³+ .......+ a₂ₙx²ⁿ
x = 1
=> 3ⁿ = a₀ +a₁ +a₂ + a₃ + .......+ a₂ₙ
=> 3ⁿ = (a₀ + a₃ +.....) + (a₁ +.......) + (a₂ +.....)
x =ω
=> (1+ω+ω²)ⁿ = a₀+a₁ω +a₂ω²+ a₃ω³ + .......+ a₂ₙω²ⁿ
ω³ = 1 , ω⁴ = ω and so on
1+ω+ω² = 0
=> 0 = (a₀ + a₃ +.....) + (a₁ +.......)ω + (a₂ +.....)ω²
x =ω²
=> (1+ω²+ω⁴)ⁿ = a₀+a₁ω² +a₂ω⁴+ a₃ω⁶ + .......+ a₂ₙω²ⁿ
ω³ = 1 , ω⁴ = ω and so on
1+ω²+ω⁴ = 1+ω² +ω = 0
=> 0 = (a₀ + a₃ +.....) + (a₁ +.......)ω² + (a₂ +.....)ω
Adding all 3
=> 3ⁿ = (a₀ + a₃ +.....) (1 + 1 + 1) + (a₁ +.......)(1+ω+ω²) + (a₂ +.....)(1 + ω² +ω)
=> 3ⁿ = (a₀ + a₃ +.....) (3) + (a₁ +.......)(3) + (a₂ +.....)(0)
=> 3ⁿ = (a₀ + a₃ +.....) 3
=> 3ⁿ/3 = a₀ + a₃ +.....
=> a₀ + a₃ +..... = 3ⁿ⁻¹
QED
Hence Proved
learn More:
The first three terms in the binomial expansion of ( ) n x y + are 1, 56 ...
https://brainly.in/question/13197893
Use binomial theorem to expand (2+X)5 in ascending powers of x ...
https://brainly.in/question/11212431
GIVEN
TO PROVE
PROOF
It is given that
Putting x = 1 in Equation (1) we get
Putting x = - 1 in Equation (1) we get
Equation (2) - Equation (3) gives
Hence proved
━━━━━━━━━━━━━━━━
LEARN MORE FROM BRAINLY
The value of 20 sigma 50-r C6 is equal to
https://brainly.in/question/25207335